期刊文献+

分数阶线性系统的稳定性证明 被引量:3

Stability proof for fractional-order linear system
下载PDF
导出
摘要 提出一种分数阶线性系统稳定性证明方法。首先分析了双参数Mittag-Leffler函数估值定理中的限制条件,通过证明得出了该定理收敛域有误,因此改进了双参数Mittag-Leffler函数估值定理,并将它的参数由实数推广到矩阵。然后提出了可适用于分数阶线性系统的稳定性理论,并利用改进的双参数Mittag-Leffler函数估值定理进行了证明。仿真结果验证了理论的正确性。 This paper presented a kind of method about stability proof for fractional-order linear system.It analyzed the restricted conditions of double parameter Mittag-Leffler function estimate theorem,and proved that the convergence domain of the theorem was wrong.So it improved the double parameter Mittag-Leffler function estimate theorem,then extended its real parameters to matrices parameters.With the improved double parameter Mittag-Leffler function estimate theorem,it proved the stability theory for fractional-order linear system.Numerical simulations verify the effectiveness of the method.
出处 《计算机应用研究》 CSCD 北大核心 2013年第7期1961-1963,1974,共4页 Application Research of Computers
关键词 分数阶线性系统 稳定性 双参数Mittag-Leffler函数 双参数Mittag-Leffler函数估值定理 fractional-order linear system stability double parameter Mittag-Leffler function double parameter Mittag-Leffler function estimate theorem
  • 相关文献

参考文献12

二级参考文献38

  • 1王振滨,曹广益,朱新坚.分数阶线性系统的内部和外部稳定性研究[J].控制与决策,2004,19(10):1171-1174. 被引量:7
  • 2王振滨,曹广益,朱新坚.分数阶线性定常系统的稳定性及其判据[J].控制理论与应用,2004,21(6):922-926. 被引量:21
  • 3汪纪锋,李元凯.分数阶控制系统稳定性分析与控制器设计:扩展频率域法[J].自动化技术与应用,2006,25(5):7-12. 被引量:10
  • 4[2]ABBISSO S,CAPONETTO R,DIAMANTE O,et al.Non-integer order integration by using neural networks[EB/OL].[2007-03-16].http://www.eecs.berkeley.edu/~chua/papers/Abbisso01.pdf.
  • 5[5]PODLUBNY I.Fractional differential equations:an introduction to fractional derivatives,fractional differential equations,to methods of their solution and some of their applications[M].San Diego:Academic Press,1999.
  • 6Machado J T, Kiryakova V, Mainardi F. Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(3): 1140-1153.
  • 7Jesus I S, Mac hado J A T. Fractional control of heat diffusion systems. Nonlinear Dynamics, 2008, 54(3): 263-282.
  • 8Valerio D, Costa J S. Time-domain implementation of fractional order controllers. lEE Proceedings - Control Theory and Applications, 2005, 152(5): 539-552.
  • 9Zamani M, Karimi-Ghartemani M, Sadati N, Parniani M. Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Engineering Practice, 2009, 17(12): 1380-1387.
  • 10Merrikh-Bayat F, Karimi-Ghartemani M. Method for designing PIA DP. stabilisers for minimum-phase fractionalorder systems. lET Control Theory and Applications, 2010, 4(1): 61-70.

共引文献43

同被引文献41

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部