期刊文献+

结合纹理特征改进的GBIS图像分割方法 被引量:2

Combined with texture features improved GBIS image segmentation method
下载PDF
导出
摘要 针对GBIS(efficient graph-based image segmentation)方法在分割含有较丰富纹理信息的图像时,分割效果不理想的问题,在L*a*b*彩色空间下,结合图像的纹理特征,提出了一种改进GBIS图像分割方法,记为IG-BIS(improved efficient graph-based image segmentation)。该方法首先将图像由RGB空间转换到L*a*b*颜色空间;接着,结合L*a*b*彩色空间,对GBIS方法中的权值函数作了改进,引入了一个常数s,用于控制相邻像素之间颜色的差异程度;然后,用熵的方法来获取L*a*b*彩色图像的纹理特征;最后,结合图像的纹理信息,改变了GBIS方法中的区域合并条件,得到最终的分割结果。实验证明,与原算法相比,该方法在分割精度与分割质量上有了很大程度的提高。IGBIS有效地抑制了彩色图像在分割中存在的过分割现象,并适合于含有丰富纹理的彩色图像。 According to the problem of the GBIS method that the result wasn’t ideal when the image contained rich texture information,combined with the texture features of the image,the paper proposed an improved GBIS image segmentation algorithm(IGBIS) in L*a*b* color space.Firstly,the method converted the image from RGB color space to L*a*b* color space.Secondly,the weight function in GBIS method was improved by a constant s that it introduced to control the color difference degree.Thirdly,it obtained texture features of the image in L*a*b* color space by using entropy method.Finally,combined with the texture features of the image,it changed the region merging condition in GBIS method,got the final segmentation result.Experiments show that,compared to source GBIS,the method is greatly improved in the accuracy and quality of segmentation.In color image segmentation,IGBIS method effectively inhibites over-segmentation phenomenon,and is suitable for the image contained rich texture information.
出处 《计算机应用研究》 CSCD 北大核心 2013年第7期2216-2218,2222,共4页 Application Research of Computers
基金 广西自然科学基金资助项目(2011GXNSFA018158 2010GXNSFC013014 2012GXNSFAA053231 2012GXNSFBA053014) 广西教育厅重点项目(201202ZD044 桂科攻11107006-45 桂科能10183006-2) 广西教育厅科研项目(201202ZD040 201204LX146) 桂林市科技开发项目(20120104-10)
关键词 图像分割 纹理特征 图论法 L*a*b*彩色空间 image segmentation entropy texture features graph theory L*a*b* color space
  • 相关文献

参考文献14

  • 1孙慧贤,张玉华,罗飞路.基于纹理特征的钢丝绳图像分割方法[J].光电工程,2009,36(4):123-127. 被引量:3
  • 2LULIO L C,TRONCO M L,PORTO A J V. JSEG-based image segmentation in computer vision for agricultural mobile robot navigation[A].2009.204-245.
  • 3KOMATI K S,SALLES E O T,FILHO M S. Fractal-JSEG:JSEG using an homogeneity measurement based on local fractal descriptor[A].2009.253-260.
  • 4孟庆涛,龚声蓉,刘纯平,王朝晖.一种基于图的颜色纹理区域分割方法[J].中国图象图形学报,2009,14(10):2092-2096. 被引量:6
  • 5CAO Zhi-guang,ZHANG Xue-xi,MEI Xue-zhu. Unsupervised segmentation for color image based on graph theory[A].2008.99-103.
  • 6ZHANG Jin,SONG Yong-hong,ZHANG Yuan-lin. A new approach of color image quantization based on normalized cut algorithm[A].2011.451-455.
  • 7GRADY L,SCHWARTZ E L. Isoperimetric graph partitioning for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,(03):469-475.doi:10.1109/TPAMI.2006.57.
  • 8PASCHOS G. Perceptually uniform color spaces for color texture analysis:an empirical evaluation[J].IEEE Transactions on Image Processing,2001,(06):932-937.
  • 9HAN Shou-dong,TAO Wen-bing,WANG De-sheng. Image segmentation based on GrabCut framework integrating multiscale nonlinear structure tensor[J].IEEE Transactions on Image Processing,2009,(10):2289-2302.
  • 10PENG Bo,ZHANG Lei,ZHANG D. Automatic image segmentation by dynamic region merging[J].IEEE Transactions on Image Processing,2011,(12):3592-3605.

二级参考文献26

共引文献436

同被引文献41

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部