期刊文献+

基于临近像素空间距离的模糊C均值聚类算法 被引量:2

Fuzzy C means clustering algorithm based on space distance of nearest pixels
下载PDF
导出
摘要 针对传统图像分割算法对不同类型噪声敏感性缺陷的问题,基于临近像素空间距离的模糊C均值聚类算法即SF-CM(fuzzy C means clustering algorithm based on the space distance of the nearest pixels)算法,采用核化的空间距离公式,将点到点之间的距离转化为点到空间的距离,很好的平衡了考察像素点临近像素点的灰度信息与位置信息间的关系,进一步克服了临近像素的位置差异对考察像素影响不同的缺点。通过在合成图像和自然图像上的大量实验并与几个传统算法进行对比,不仅表现出了很强的抗干扰能力,提高了聚类精度,并且很好的保留了原图像边缘等细节信息,体现出了较强的鲁棒性。 For the traditional image segmentation algorithms is sensitive to different type noises, the fuzzy C means clustering algorithm based on the space distance of nearest pixels (SFCM) uses a nuclear space distance formula which makes the distance between dot to dot translate into the dot to the space. So that it well balanced gray level and location information of the pixels around the query pixel, overcome the defect brought by the location differences of the pixels near the query pixel. Experiments performed on a large number of synthetic and real-world images show that it not only demonstrate a strong anti-interference ability to the noise, improve the clustering accuracy, hut also retaine the original image edge detail information, demonstrate stronger robustness.
出处 《计算机工程与设计》 CSCD 北大核心 2013年第7期2476-2482,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(61170122) 江苏省自然科学基金项目(BK2011003)
关键词 模糊聚类 C均值聚类算法 空间距离 核函数 鲁棒性 fuzzy clustering C means space distance kernel functiom robustness
  • 相关文献

参考文献13

  • 1Stelios Krinidis, Vassilios Chatzis. A robust fuzzy local information e-means clustering algorithm [J]. IEEE Transactions on Image Proessing, 2010, 19 (5): 1328-1337.
  • 2Yamaoka K, Morimoto T, Adaehi H, et al. Image segmentation and pattern matching based FPGA/ASIC imple-mentation architecture of real-time object tracking [R]. Proc Conf Asia South Pacific Design Automation, 2006: 176-181.
  • 3Krinidis M, Pitas I. Color texture segmentation based-on the modal energy of deformable surfaces [J]. IEEE Transactions on Image Processing, 2009, 18 (7): 1613-1622.
  • 4Cai W, Chen S, Zhang D. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation [J]. Pattern Recognition, 2007, 40 (3): 825-838.
  • 5Karoui I, Fablet R, Boucher J M, et al. Region-based image seg- mentation using texture statistics and level-set methods [R]. IEEE Int Conf Acoustics Speech and Signal Processing, 2006.. 693-696.
  • 6HOU Z, QIAN W, HUANG S, et al. Regularized fuzzy c-means method for brain tissue clustering [J]. Pattern Recognition Letters, 2007 (28): 1788-1794.
  • 7JI Z X, SUN Q S, XIA D S. A framework with modified fast FCM for brain MR images segmentation [J]. Pattern Recognition, 2011 (44).. 999 - 1013.
  • 8LIU Yiguang, Shuzhi Sam Ge, LI Chunguang, et al. k-NS: A classifier by the distance to the nearest subspace[J]. IEEE Transactions on Neural Networks, 2011, 22 (8): 1256-1267.
  • 9Deza E, Deza M M. Dictionary of distances.amsterdam [M]. The Netherlands: Elsevier, 2006:262 272.
  • 10YANG M S, Tsai H S. A gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction [J]. Pattern Recognition Letters, 2008 (29): 1713-1725.

二级参考文献3

共引文献11

同被引文献30

  • 1杨勇,郑崇勋,林盘,潘晨,顾建文.基于改进的模糊C均值聚类图像分割新算法[J].光电子.激光,2005,16(9):1118-1122. 被引量:20
  • 2Handl J, Knowles J. An evolutionary approach to multiohjec- tire clustering [J]. IEEE Transactions on Evolutionary Com- putation, 2007, 11 (1): 56-76.
  • 3Saha S, Bandyopadhyay S. A symmetry based multiobjective clustering technique for automatic evolution of clusters [J]. Pattern Recognition, 2010, 43 (3): 738-751.
  • 4Qian Xiaoxue, Zhang Xianrong, Jiao Licheng, et al. Unsu- pervised texture image segmentation using multiobjective evolu- tionary clustering ensemble algorithm [C] //IEEE Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 2008: 3561-3567.
  • 5Zhu Lin, Cao Longbing, Yang Jie. Multiobjective evolutionary algorithm-based soft subspace clustering [C] //IEEE Congress on Evolutionary Computation. NY, USA: IEEE, 2012.
  • 6Strehl A, Ghosh J. Cluster ensembles: A knowledge reuseframework for combining multiple partitions [J]. Journal of Machine Learning Research, 2008, 3 (3): 583-617.
  • 7Deb K, Pratap A, Agarwal S, et al. A fast and elitist mul- tiobjective genetic algorithm: NSGA-II [J]. IEEE Transac- tions on Evolutionary Computation, 2002, 6 (2) : 182-197.
  • 8University of CaliTomia, Irvine. UCI machine learning reposi- tory [EB/OL]. [2013-09- 20]. http://archive, ics. uci. edu/ ml/datasets, html.
  • 9Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-353.
  • 10Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部