期刊文献+

基于截断重排的小波图像无损压缩算法

Wavelet Image Lossless Compression based on Truncation and Rearrangement
下载PDF
导出
摘要 针对图像小波系数的能量聚集特性,提出一种基于截断重排的小波图像无损压缩算法。该算法在离散小波变换的基础上,对图像低频子带的小波系数先后按照大津法和希尔伯特曲线进行分类和重排,对图像各高频子带的小波系数分别根据信息熵代价函数进行自适应的奇异值截断变换,然后对截断重排后的所有小波系数进行熵编码,以实现图像无损压缩。实验结果表明,该算法实现简单,有效地降低了图像的编码比特率,提升了图像无损压缩的压缩比。 According to the energy aggregation properties of image wavelet coefficients, a new wave- let image lossless compression algorithm based on rearrangement and truncation is proposed. On the basis of discrete wavelet transform, the algorithm successively classifies and rearranges the low frequency sub-- band coefficients in line with Otsu method and Hilbert curve, while, respectively makes adaptive trun- cated singular value transform on all the high frequency sub-bands in light of information entropy cost function, followed by entropy encoding for lossless compression. Experimental results show the proposed algorithm effectively reduces encoding tio of image lossless compression. bit rate with simple implementation, improving the compression ra-.
作者 郭慧杰
出处 《宇航计测技术》 CSCD 2013年第3期39-43,共5页 Journal of Astronautic Metrology and Measurement
关键词 图像无损压缩 小波变换 分类重排 奇异值截断变换 Image lossless compression Wavelet transform Classified rearrangement Singu--lar value truncation transform
  • 相关文献

参考文献9

  • 1Gaede V, Gttnther O. Multidimensional access methods [J]. ACM Computing Surveys (CSUR), 1998, 30(2): 170 -231.
  • 2LiangJ. Y., Chen C. S., HuangC. H., etal. Loss- less compression of medical images using Hilbert space- filling eurves[ J ]. Computerized Medical Imaging and Graphics, 2008, 32(3): 174 - 182.
  • 3叶松,戴才良,于志强,唐凌,吴渊,王杰斌.基于小波域奇异值分解的图像压缩算法[J].计算机工程与应用,2008,44(18):183-185. 被引量:4
  • 4Zhang Jun, Hu Jinglu. Image segmentation based on 2D Otsu method with histogram analysis [ C ]. Proceedings of 2008 International Conference on Computer Science and Software Engineering. Wuhan, China: IEEE Computer Society, 2008 : 105 - 108.
  • 5Jagadish H V. Linear clustering of objects with multiple attributes [ C ]. Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data, New York, USA: ACM Press, 1990, 19(2) : 332-342.
  • 6Macro D, Neuhoff D L. Entropy of highly correlated quantized data [ J]. IEEE Transactions on Information Theory, 2010, 56(5) : 2 455 -2 478.
  • 7Marco D, Effros M. On lossless coding with coded side information [ J ]. IEEE Transactions on Information The- ory, 2009, 55 (7) : 3 284 - 3 296.
  • 8Weinberger M J, Seroussi G, Sapiro G. The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS [ J ]. IEEE Transactions on Image Processing, 2000, 9 (8) : 1 309 - 1 324.
  • 9Skodras A, Christopoulos C, Ebrahimi T. The JPEG 2000 still image compression standard [ J ]. IEEE Sig- nal Processing Magazine, 2001, 18(5) - 36 -58.

二级参考文献11

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部