期刊文献+

一类具有常数移民和分布时滞的SIRS传染病模型分析 被引量:1

Epidemic Models of SIRS Type with Constant Immigration and Distribution Delay
下载PDF
导出
摘要 通过恰当的Liapunov函数,研究了一类在易感者类和移出者类具有常数移民、通过媒介传播和含分布时滞的SIRS传染病模型.在不存在染病者移民时,得到了地方平衡点存在的阈值R0.当R0<1时,无病平衡点是全局渐近稳定的;当R0>1时,无病平衡点不稳定,地方平衡点全局渐近稳定.在染病者存在常数输入时,模型不存在无病平衡点,地方平衡点全局渐近稳定. An epidemic model of SIRS type with constant immigration of each class and distribution delay was dealt with by means of suitable Liapunov functions. In the absence of infectious individuals, the threshold of existence of endemic equilibrium was found. Below the threshold, the disease-free equilibrium is globally asympototically stable~ above the threshold, the disease-free equilibrium is unstable and the endemic quilibrium is globally asymptotically stable. In the existence of input of infectious individuals, the models have no disease-free equilibrium and the SIRS model is globally stable in the corresponding region.
作者 朱春娟
出处 《上海理工大学学报》 CAS 北大核心 2013年第3期261-264,共4页 Journal of University of Shanghai For Science and Technology
关键词 传染病模型 分布时滞 平衡点 稳定性 infectious disease model distribution delay equilibrium stability
  • 相关文献

参考文献5

二级参考文献29

  • 1付景超,井元伟,张中华,张嗣瀛.具垂直传染和连续预防接种的SIRS传染病模型的研究[J].生物数学学报,2008,23(2):273-278. 被引量:33
  • 2丁善仕,王辅俊.具有非线性接触率的SILI流行病模型[J].生物数学学报,1994,9(2):52-59. 被引量:5
  • 3MA Z,LIU J P,LI J.Stability analysis for differential infectivity epidemic modes[J].Nonlinear Anal.Real Word Applications,2003,4(5):841-856.
  • 4Kuang Y. Delay differential equation with applications in population dynamics [M]. San Diego: Academic Press, 1993.
  • 5Anderson R M, May R M. Population biology of infectious disease I [J]. Nature, 1979, 180(2):361-367.
  • 6Hethcote H M. The mathematics of infectious disease[J]. SIAM Review, 2000, 42(4) :599-653.
  • 7Cooke K L. Stability analysis for a vector disease model[J]. Rocky Mount J Math, 1979, 7(2):253-263.
  • 8Beretta E, Takeuchi Y. Global stability of an SIR pidemic model with delay [J]. J Math Biol, 1995, 33(2) :250-260.
  • 9Kermack W O, McKendrick A G. Contributions to the matlhematical theory of epidemics-Part 1[J].Proc RoySoc London Ser A, 1927,115(3) :700-721.
  • 10Mena-Lorca J, Hethcote H W. Dynamic models of infectious diseases as regulators of population sizes[J]. J Math Biol, 1992,30(4):693-716.

共引文献55

同被引文献3

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部