期刊文献+

含间隙四自由度系统混沌动力学分析 被引量:3

Dynamic analysis of chaos for a 4-degree-of-freedom system with clearance
下载PDF
导出
摘要 打滑极易引起轧机传动系统产生振动,是大多数轧机传动系统遭到异常损坏的主要因素。本文针对某厂轧机生产中出现的问题,考虑轧辊扁头、扁头套间隙和轧辊打滑状态,建立了该轧机主传动系统非线性动力学模型及数学模型,采用龙格库塔方法对系统动态响应进行数值计算,并利用MATLAB软件编程进行仿真分析,得到了系统的分岔图、相图和庞加莱截面。基于对模型和数值计算结果的分析,发现轧机打滑可能引起系统混沌现象。本文的研究成果可为控制和分析轧辊打滑提供重要的理论参考。 Slippage may result in the vibration of the drive system of rolling mill,which is a major reason of most system damage.A non-linear mechanical model and its corresponding mathematical model are established according to production problems of plate mill in the light of the rolling slippage of a rolling mill drive train with backlash at the palm end of roller.The Runge-Kutta method is used to solve the response of the system.The bifurcation diagram,the phase diagram and the Poincare sections graph of the system are obtained using MATLAB software.It is found that the slippage of rolling mill may cause the system's chaotic behaviors based on the analysis of the model and the numerical calculation results.The study results provid an important theoretical reference to control and analyze roll slippage.
出处 《燕山大学学报》 CAS 2013年第3期245-249,共5页 Journal of Yanshan University
基金 河北省自然科学基金资助项目(E2011203176)
关键词 轧机 主传动系统 间隙 分岔 混沌 rolling mill main drive system clearance bifurcation chaos
  • 相关文献

参考文献16

  • 1Wang Zhanghai, Wang Dejun. Dynamic characteristics of a rollingmill drive system with backlash in rolling slippage [J], Journal ofMaterials Processing Technology, 2009,97 (1/3): 69-73.
  • 2Xu L, LuM W, Cao Q J. Bifurcation and chaos of a harmonicallyexcited oscillator with both stiffness and viscous damping piece-wise linearities by incremental harmonic balance method [J], Jour-nal of Sound and Vibration, 2003,264 (4): 873-882.
  • 3Xu L, LuM W, Cao Q J. Nonlinear vibration of dynamical systemwith a general form of piecewise-linear viscous damping by incre-mental harmonic balance method [J]. Physics Letters A, 2002,301(1/2): 65-73.
  • 4Cao Q J, Xu L, Djidjeli K, et al.. Analysis of period-doublingand chaos of a non-symmetric oscillator with piecewise-linearity[J]. Chaos, Solitons and Fractals, 2001,12 (10): 1917-1927.
  • 5Mahfouz I A, Badrakhan F. Chaotic behavior of some piece-linearsystems, parti: systems with set-up spring or with unsymmetricelasticity [J] Journal of Sound and Vibration, 1990,143(2):255-288.
  • 6李万祥,丁旺才,周勇.一类三自由度含间隙系统的分岔与混沌[J].工程力学,2005,22(5):111-114. 被引量:17
  • 7孟令启,吴浩亮,王建勋,雷明杰.立辊轧机主传动系统的扭振非线性分析[J].中南大学学报(自然科学版),2009,40(5):1288-1293. 被引量:7
  • 8李鸿光,闻邦椿.具有间隙和振动边界的自激振动系统的非线性振动[J].振动工程学报,2000,13(1):122-127. 被引量:22
  • 9Mahfouz I A, Badrakhan F. Chaotic behavior of some piece-linearsystems, partll: systems with clearance [J]. Journal of sound andVibration, 1990,143 (2): 289-328.
  • 10Natsiavas S. Stability and bifurcation analysis for oscillators withmotion limiting constraints [J]. Journal of Sound and Vibration,1990,141 (1): 79-102.

二级参考文献37

共引文献41

同被引文献36

  • 1陈树辉,黄建亮.轴向运动梁非线性振动内共振研究[J].力学学报,2005,37(1):57-63. 被引量:60
  • 2杜国君.夹层圆板的大幅度振动[J].应用数学和力学,1994,15(5):435-442. 被引量:14
  • 3李伟,徐伟,赵俊锋,靳艳飞.耦合Duffing-van der Pol系统的随机稳定性及控制[J].物理学报,2005,54(12):5559-5565. 被引量:3
  • 4周金宇,陈占福.粗轧机主传动扭振分析[J].钢铁,2007,42(5):51-54. 被引量:14
  • 5唐有琦.轴向运动梁横向非线性振动动力学特性分析[D]{H}沈阳:沈阳航空工业学院,20081-4.
  • 6铁摩辛柯S;杨D H;小韦孚W;胡人礼.工程中的振动问题[M]{H}北京:中国铁道出版社,197835-162.
  • 7Pellicano F,Vestroni F. Nonlinear dynamics and bifuecations of an axially moving beam[J].{H}Journal of Vibration and Acoustics,2000.21-30.
  • 8Riedel C H,Tan C A. Coupled forced response of an axially moving strip with internal resonance[J].Internal Journal of Non-linear Mechanics,2002,(01):101-116.
  • 9Φz H R,Pakdemirli M,Boyacm H. Non-linear vibrations and sta-bility of an axially moving beam with time-dependent velocity[J].{H}International Journal of Non-Linear Mechanics,2001,(01):107-115.
  • 10Chen Shuhui,Huang Jianliang,Sze K Y. Multidimensional lin-dstedt-poincare method for nonlinear vibration of axially moving beams[J].{H}Journal of Sound and Vibration,2007,(1/2):1-11.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部