摘要
采用直流电弧等离子体加高压氢化法制备了纳米镁基储氢材料Mg-H和MgEr-H,并对其相组成和放氢性能进行了表征,结果表明添加稀土元素Er可使Mg粉的吸氢更完全,同时使MgH2的放氢温度降低。采用同步热分析方法(TG/DSC)分析了镁基储氢材料对高氯酸铵(AP)热分解性能的影响,结果表明两种镁基储氢材料都能有效促进AP的低温和高温分解过程,尤其是高温分解峰温下降了约80℃,并且使得表观放热量大幅增加,可达纯AP放热量的2倍多,反应过程更为剧烈。添加稀土的镁基储氢材料对AP分解的催化效果更好。
Magnesium based hydrogen storage nanomaterials, Mg-H and MgEr-H, were prepared through the DC arc plasma method followed by hydrogenation under high hydrogen pressure. The phase composition and dehydriding properties of the hydrogenated nanopowders were analyzed. It is revealed that Er addition can effectively increase the hydrogen absorption percentage of Mg powder and reduce the dehydriding temperature. The thermal decomposition behaviors of pure ammonium perchlorate (AP) and AP with the presence of the magnesium based hydrogen storage nanomaterials have been investigated by simultaneous thermal analysis (TG-DSC). The results show that both Mg-H and MgEr-H can promote the thermal decomposition of AP, including the low temperature reaction and the high temperature reaction. Particularly for the high temperature decomposition, the temperature can be decreased by 80 ℃. The decomposition heat of AP is increased greatly, around twice of that of the pure AP, and the reaction rate is also much faster. Therefore, the magnesium based hydrogen storage nanomaterials with rare earth addition are good catalysts for the decomposition of AP.
出处
《稀有金属材料与工程》
SCIE
EI
CAS
CSCD
北大核心
2013年第7期1445-1449,共5页
Rare Metal Materials and Engineering
基金
上海市科委基础研究重点项目(10JC1407700)
上海市自然科学基金(11ZR1417600)
上海市重大专项(10DZ2211000)
教育部博士点新教师基金项目(20100073120007)
关键词
纳米镁基储氢材料
高氯酸铵(AP)
热分解
稀土
nano-magnesium based hydrogen storage materials
ammonium perchlorate (AP)
thermal decomposition
rare earth