期刊文献+

纳米镁基储氢材料对AP热分解性能的影响 被引量:7

Effect of Nano-magnesium Based Hydrogen Storage Materials on Thermal Decomposition of Ammonium Perchlorate
原文传递
导出
摘要 采用直流电弧等离子体加高压氢化法制备了纳米镁基储氢材料Mg-H和MgEr-H,并对其相组成和放氢性能进行了表征,结果表明添加稀土元素Er可使Mg粉的吸氢更完全,同时使MgH2的放氢温度降低。采用同步热分析方法(TG/DSC)分析了镁基储氢材料对高氯酸铵(AP)热分解性能的影响,结果表明两种镁基储氢材料都能有效促进AP的低温和高温分解过程,尤其是高温分解峰温下降了约80℃,并且使得表观放热量大幅增加,可达纯AP放热量的2倍多,反应过程更为剧烈。添加稀土的镁基储氢材料对AP分解的催化效果更好。 Magnesium based hydrogen storage nanomaterials, Mg-H and MgEr-H, were prepared through the DC arc plasma method followed by hydrogenation under high hydrogen pressure. The phase composition and dehydriding properties of the hydrogenated nanopowders were analyzed. It is revealed that Er addition can effectively increase the hydrogen absorption percentage of Mg powder and reduce the dehydriding temperature. The thermal decomposition behaviors of pure ammonium perchlorate (AP) and AP with the presence of the magnesium based hydrogen storage nanomaterials have been investigated by simultaneous thermal analysis (TG-DSC). The results show that both Mg-H and MgEr-H can promote the thermal decomposition of AP, including the low temperature reaction and the high temperature reaction. Particularly for the high temperature decomposition, the temperature can be decreased by 80 ℃. The decomposition heat of AP is increased greatly, around twice of that of the pure AP, and the reaction rate is also much faster. Therefore, the magnesium based hydrogen storage nanomaterials with rare earth addition are good catalysts for the decomposition of AP.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2013年第7期1445-1449,共5页 Rare Metal Materials and Engineering
基金 上海市科委基础研究重点项目(10JC1407700) 上海市自然科学基金(11ZR1417600) 上海市重大专项(10DZ2211000) 教育部博士点新教师基金项目(20100073120007)
关键词 纳米镁基储氢材料 高氯酸铵(AP) 热分解 稀土 nano-magnesium based hydrogen storage materials ammonium perchlorate (AP) thermal decomposition rare earth
  • 相关文献

参考文献14

  • 1Galwey A K, Mohamed M A, Cromie D S. React Solids[J]. ,1986’ 1:235.
  • 2Rastogi R P,Singh G, Dubey B L e/ al. J Catal[J]. , 1980,65:25.
  • 3Galwey A K,Herley P J, Mohamed M A. Thermochim1982,132: 105.
  • 4Zhang Tonglai(张同来),Zhang Jianguo(张建国),Yang Li(杨利)et al. 含能材料[J]. , 2004, SI: 663.
  • 5James P F lynn. US Patent,3844856[P]. , 1975.
  • 6Ermilov A S. Russia Patent, 2241693[P]. , 2004.
  • 7Jingtian Y, Tetsuyoshi Y, Osamu Y et al. Mater Transit 2001,42: 712.
  • 8Takahisa 0,Tomohiro A, Junichiro Y. J Jpn Inst2000,64:651.
  • 9Liu Leili(刘嘉力),Li Fengsheng(李凤生),Zhi Chunlei(支春雷)et al.含能材料[J]. ,2009, 17(5): 501.
  • 10孙海全,邹建新,曾小勤,丁文江.纯Mg及Mg-Nd超细粉体的制备及其储氢性能[J].稀有金属材料与工程,2012,41(10):1819-1823. 被引量:7

二级参考文献65

  • 1洪伟良,刘剑洪,田德余,罗仲宽,赵风起.纳米催化剂的特性及其在固体推进剂中的应用[J].飞航导弹,2000(4):43-45. 被引量:12
  • 2段波,李克平,赵兴中.影响金属超微粉粒径的几个因素[J].材料工程,1996,24(2):13-15. 被引量:6
  • 3李上文 赵风起.铜化合物作燃烧催化剂的固体推进剂的探索[J].火炸药学报,1986,(1).
  • 4Recham N, Bhat V V, Kandavel M, et al. Reduction of hydrogen desorption temperature of ball-milled MgH2 by NbF5 addition [J]. J Alloys Compd, 2008,464: 377
  • 5Xie L, Liu Y, Wang Y T, et al. Superior hydrogen storage kinetics of MgH2 nanoparticles doped with TiF3 [J].Acta Mater, 2007,55 : 4585
  • 6Ma Laipeng, Wang Ping, Cheng Huiming. Improving hydrogen sorption kinetics of MgH2 by mechanical milling with TiF3[J].J Alloys Compd, 2007,432: L1
  • 7Ivanov E, Konstanchuk I, Bokhonov B, et al. Hydrogen interaction with mechanically alloyed magnesium-salt composite materials [J]. J Alloys Compd, 2003,359 : 320
  • 8de Castro J F R, Yavari A R, LeMoulec A, et al. Improving H-sorption in MgH2 powders by addition of nanoparticles of transition metal fluoride catalysts and mechanical alloying [J]. J Alloys Compd, 2005,389 : 270
  • 9Deledda S, Borissova A, Poinsignon C, et al. H-sorption in MgH2 nanocomposites containing Fe or Ni with fluorine[J]. J Alloys Compd, 2005,404-406 : 409
  • 10Bhat V V, Rougier A, Aymard L, et al. Catalytic activity of oxides and halides on hydrogen storage of MgH2 [J].J Power Sources, 2006,159 : 107

共引文献54

同被引文献145

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部