期刊文献+

基于谱熵的语音端点检测算法改进研究 被引量:10

Research of Speech Endpoint Detection Based on Spectral Entropy Algorithm
原文传递
导出
摘要 语音端点检测是语音处理中重要的领域之一。常规谱熵语音端点检测算法是通过检测语音的功率谱的平坦程度,从而达到语音端点检测的目的。但是该方法在平稳噪声环境下较好,在无噪声和非平稳噪声环境下效果较差。作者在分析了无噪声环境下常规谱熵端点检测算法效果差的原因的基础上,结合了语音的短时能量算法,对常规谱熵算法进行了改进,形成了一个新的特征参数——谱熵能量积。仿真结果显示,该方法相对于常规谱熵算法,在无噪声的环境下检测精度有了很大的提高,在非平稳噪声环境下也有了一定的提高,鲁棒性得到增强。 Robust endpoint detection is one of the most important areas of speech processing.The traditional spectral entropy algorithm used to speech endpoint detection is based on the flatness of the detected speech spectrum,but this method is effective in stationary noise environment rather than other noise cases.This paper analyzed the reason why the traditional spectral entropy algorithm was not effective in the situation without noise,at the same time,it showed a new characteristic parameter based on short-time energy and spectral entropy algorithm.The results show that this method has better robustness and precision,especially in no noise environment.
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2013年第7期134-139,共6页 Journal of Wuhan University of Technology
基金 中央高校基本科研业务费专项基金(2011-Ia-005)
关键词 端点检测 谱熵 短时能量 鲁棒性 endpoint detection spectral entropy short-time energy robust
  • 相关文献

参考文献11

  • 1Shen J,Hung J,Lee L. Robust Entropy-based Endpoint Detection for Speech Recognition in Noisy Environments[C]// Proceedings of International Conference on Spoken Language Processing. Sydney: [s. n. ], 1998:232-238.
  • 2Ramirze J,Segura J C,Benitez C. An Effective Sub-band OSF-based VAD with Noise Reduction for Robust Speech Rec- ognition[J]. IEEE Transactions on Speech and Audio Processing, 2005,13 ( 6 ) :1119-1129.
  • 3Wu B F,Wang K C. Robust Endpoint Detection Algorithm Based on the Adaptive Banding-partitioning Spectral Entropy in Adverse Environment[J]. IEEE Transactions on Speech and Audio Processing,2005,13(5):762-775.
  • 4Wu G D,Lin C T. Word Boundary Detection with Mel-scale Frequency Bank in Noisy Environment[J]. IEEE Transac- tions on Speech and Audio Processing,2000,8(5):541-554.
  • 5Li J,Jiang C. An Improved Speech Endpoint Detection Based on Spectral Subtraction and Adaptive Sub-band Spectral En- tropy[C]//International Conference on Intelligent Computation Technology and Automation. [S. 1. ]: IEEE, 2010: 591- 594.
  • 6王琳,李成荣.一种基于自适应谱熵的端点检测改进方法[J].计算机仿真,2010,27(12):373-375. 被引量:26
  • 7Jia C, Xu B. An Improved Entropy-based Endpoint Detection Algorithm[C]//Proceedings of International Symposium on Chinese Spoken Language Processing. Taipei: [s. n. ], 2002..285-288.
  • 8王景芳.实时语音端点鲁棒检测[J].计算机工程与应用,2011,47(20):147-150. 被引量:4
  • 9尹岩岩,殷业,罗汉文,钱栋军.基于短时能零熵的端点检测方法[J].计算机仿真,2012,29(11):408-411. 被引量:6
  • 10刘静,王建国,孙文杰,张帆.机载环境下的语音端点检测[J].电讯技术,2008,48(10):59-62. 被引量:5

二级参考文献44

共引文献44

同被引文献71

引证文献10

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部