期刊文献+

基于相干激光通信空间光混频器数学模型的建立 被引量:9

Establishment of Space Light Mixer Mathematical Model Based on the Space Coherent Laser Communication
原文传递
导出
摘要 从自由空间相干激光通信接收机的核心部件空间光混频器的光学原理出发,基于其在相干接收系统中所起的作用,建立了一套利用介质膜偏振分光棱镜(PBS)交叉分光构成方式的结构模型。研究结构模型中各光学元件对信号光与本振光作用的数学关系式,最终建立出空间光混频器的数学模型。该数学模型向具体结构演化,通过实验佐证了空间光混频器数学模型的正确性及其合理性。空间光混频器数学模型具体指出了各种光学元件相对摆放位置及其相对角度和相位补偿晶体的补偿范围及其调整方式,对未来高性能空间光混频的研制与改进有重大的指导意义。 From the optical principle of spatial light mixer which is the core-block of the free space coherent laser communication receiver, based on itrs importance in the coherent receiver system, a structure model of the spatial light mixer is established by dielectric film polarization beam splitting (PBS) cross-spectral. Meanwhile, the mathematical relationship of optical signal and local oscillator laser effected by each optical component in the structure model is studied and the spatial light mixer mathematical model is established finally. With the mathematical model evoluted to the specific structure, the correctness and rationality of mathematical model of the spatial light mixer are evidenced by experiment. The mathematical model of spatial light mixer points out not only the relative placement of various optical components, their relative angles, but also the compensating scope of crystal phase compensation and its adjustment method, which has a great guiding significance for the development and improvement of high-performance spatial light mixer in the future.
出处 《光学学报》 EI CAS CSCD 北大核心 2013年第7期142-147,共6页 Acta Optica Sinica
基金 国家863计划(2011AA701111)
关键词 光通信 空间光混频器 相干 数学模型 自由空间 optical communications space light mixer coherence mathematical model free space
  • 相关文献

参考文献10

二级参考文献50

  • 1李建龙,张丽娟,傅克祥,刘细成.一种新型的光束分束结构——复合调制型光栅[J].中国激光,2006,33(1):43-48. 被引量:2
  • 2刘立人.卫星激光通信 Ⅱ地面检测和验证技术[J].中国激光,2007,34(2):147-155. 被引量:32
  • 3T. Y. Yan, M. Jeganathan, J. R. Lesh. Progress on the development of the optical communications demonstrator [C]. SPIE, 1997, 2990:94-101.
  • 4A. T. Nakamori. Present and future of optical intersatellite communication research at the National Space Development Agency of Japan(NASDA)[C]. SPIE, 1994, 2123:2-13.
  • 5M. Boroson,R. S. Bondurant,J. J. Seozzafava. Overview of high rate deep space laser communications options[C]. SPIE, 2004, 5338:37-49.
  • 6M. Bopp,G. Huther,T. Spatschecketal.. BPSK homodyne and DPSK heterodyne receivers for free-space communication with Nd : host lasers[C]. SPIE, 1991, 1522:199-209.
  • 7F. Herzog, K. Kudielka, D. Erni et al.. Optical phase locked loop for transparent inter satellite communications[J]. Opt. Express, 2005, 13(10):3816- 3821.
  • 8F.T. Herzog. An optical phase locked loop for eoherent space communications [D]. Switzerland: Swiss Federal Institute of Technology Zurich, 2006.
  • 9Heinrich-Hertz. Compact bulk optical 90° hybrid for balanced phase diversity receivers[J]. Electron. Lett., 1989, 25(22): 11 -12.
  • 10Seiji Norimatsu, Noboru Takachio, Yasuyuki Inoue et al.. An optical 90°-hybrid balanced receiver module using a planar lightwave circuit[J]. IEEE Photon. Technol. Lett. , 1994, 6 (6): 737-740.

共引文献48

同被引文献129

引证文献9

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部