期刊文献+

多工序车削的自适应搜索非支配排序遗传算法 被引量:9

Adaptive Search Non-Dominated Sorting Genetic Algorithm of Multi-Pass Turning Operations
下载PDF
导出
摘要 在实际数控生产加工过程中,切削参数的优化对于保证加工质量、提高生产效率和降低加工成本具有非常重要的意义。为计算以单位生产成本最小为优化目标的多工序车削非线性优化模型,在NSGA-II算法基础上提出了一种新的自适应搜索非支配排序遗传算法(ASNSGA)。多工序车削加工实例结果表明,与模拟退火算法(SA/PA)、分散搜索算法(SS)及浮点编码遗传算法(FEGA)优化算法比较,自适应搜索非支配排序遗传算法得到最低的单位生产成本,有助于数控加工中粗车进给量、粗车切削速度及精车进给量、精车切削速度等切削参数的优化选择。 The optimization of cutting parameters is significant for machining quality,production efficiency and machining economics in practical NC machining process.In order to calculate the optimum goal for minimum unit production cost,an adaptive search non-dominated sorting genetic algorithm(ASNSGA) is applied to multi-pass turning operations nonlinear cutting optimization model subject to various practical cutting constraints,which is based on non-dominated sorting genetic algorithm-II.By comparing with those of genetic algorithms(GA),simulated annealing algorithm(SA/PA),scatter search(SS),float encoded genetic algorithm(FEGA),the cutting optimization model experimental results obtained by the proposed multi-pass turning operations nonlinear cutting optimization algorithms,named ASNSGA-II,are effective for solving complex nonlinear cutting optimization problem,reducing the unit production cost,and helping for the cutting parameters optimum selection such as feed rate and cutting rate in rough NC machining,feed rate and cutting rate in finish NC machining.
出处 《机械设计与制造》 北大核心 2013年第7期119-122,共4页 Machinery Design & Manufacture
基金 湖北省武汉市属高校科研项目(2010140)
关键词 单位生产成本 自适应搜索非支配排序遗传算法 多工序车削切削参数优化 粗精车进给量 粗精车切削速度 Unit Production Cost Adaptive Search Non-Dominated Sorting Genetic Algorithm Multi-Pass Turning Operations Optimization of Cutting Parameters Feed Rate in Rough and Finish Machining Cutting Speed in Rough and Finish Machining
  • 相关文献

参考文献12

  • 1陈青艳.非支配排序自适应遗传算法的车削优化[J].机械设计与研究,2013,29(2):69-73. 被引量:7
  • 2陈青艳,胡成龙,杜军.加工精度和金属切除率的精车切削优化[J].组合机床与自动化加工技术,2013(3):111-114. 被引量:16
  • 3齐晓宁,汪永超,刘毅,张魁伟.面向绿色制造的切削用量优化研究[J].机械设计与制造,2012(8):140-142. 被引量:7
  • 4K. Vijayakumar G. Prabhaharan, P. Asokan, R. Saravanan Optimization ofmuhi-passturningoperationsusingantcolonysystem [J]. InternationalJournal of Machine Tools & Manufacture, 2003(43 ) : 1633-1639.
  • 5Abdullah Konaka, David W. Coitb, Alice E. Smith. Multi-objective optimization using genetic algorithms [J]. Reliability Engineering and System Safety, 2006,91 ( 9 ):995-1007.
  • 6G.C. Onwubolo. Multi-pass turning operations optimization based on genetic algorithms[J], Proc Instn Mech Engrs 215B, 2001 : 117-124.
  • 7M.C.CHEN and D.M.TSAI, A simulated annealing approach for optimization of multi-pass turning operations [J]. INT. J. PROD.RES, 1996,34( 10): 2803-2825.
  • 8M.C.CHEN, Optimization machining economics models of turning operations using the scatter search approach [J ], International Journal of Production Research, 2004(42 ) : 2611-2625.
  • 9M.C.CHEN,K.Y.CHEN, Optimization of muhipass turning operations with genetic algorithms: a note [J]. International Journal of Production Research, 2003(41 ) : 3385-3388.
  • 10Kalyanmoy Deb, Amrit Pratap. A Fast and Elitist Multi-objective Genetic Algorithm: NSGA-Ⅱ [J]. IEEE Transactions on Evolutionary Compution, 2002,6(2):182-197.

二级参考文献28

  • 1潘敏强,刘亚俊,汤勇.车削加工中切削用量的分层多目标最优化模型[J].工具技术,2005,39(8):29-33. 被引量:11
  • 2陈桦,赵海霞.基于线性目标规划的切削参数多目标优化模型[J].西安工业大学学报,2007,27(1):24-28. 被引量:4
  • 3周泽华.金属切削原理[M].上海:上海科学技术出版社,1994.
  • 4金属切削理论与实践编委会.金属切削理论与实践[M].北京:北京出版社,1985.
  • 5孟少农.机械加工工艺手册[M].北京:机械工业出版社,2006.
  • 6叶迎春 王树斌.基于线性目标规划的切削参数多目标优化.科技信息,2008,22:556-558.
  • 7K. Vijayakumar, G. Prabhaharan, P. Asokan, R. Sara- vanan. Optimization of multi-pass turning operations using ant colony system [ J ]. International Journal of Machine Tools & Manufacture, 2003,4 (43) : 1633 - 1639.
  • 8Kalyanmoy Deb, Amrit Pratap. A Fast and Elitist Multi-ob- jective Genetic Algorithm: NSGA-Ⅱ[ J]. IEEE Transactions on Evolutionary Computation, 2002,6 ( 2 ) : 182 - 197.
  • 9Abdul|ah Konak David W. Coit, Alice E. Smith Multi-ob- jective optimization using genetic algorithms[ J]. Reliability Engineering and System Safety 2006,91 (9) :992 - 1007.
  • 10Coello, C. A. C. ; Pulido, G. T. ; Lechuga, M.S. Handling multiple objectives with particle swarm optimizations[ J ]. E- volution Computation, IEEE Transactions on. 2004,8 ( 3 ) : 256 - 279.

共引文献18

同被引文献71

  • 1夏良华,龚传信.装备保障资源柔性分配研究[J].装备指挥技术学院学报,2004,15(3):30-32. 被引量:3
  • 2汪文津,王太勇,范胜波,罗珺,李娜.车削过程切削力的计算机数值仿真[J].机械强度,2006,28(5):725-728. 被引量:11
  • 3曹继平,宋建社,郭军,刘建平.一种战时装备维修保障资源优化调度算法[J].系统仿真学报,2007,19(15):3390-3394. 被引量:32
  • 4王先逵.机械加工工艺手册工艺基础卷[M].北京:机械工业出版社,2006.
  • 5王先逵.机械加工工艺手册加工技术卷[M].北京:机械工业出版社,2006.
  • 6CHEN M C, TSAI D M. A Simulated Annealing Approach for Optimization of Multi-pass Turning Operations [ J ]. In- ternational Journal of Production Research, 1996,34 ( 10 ) : 2803 - 2825.
  • 7YILDIZ A R. A Novel Particle Swarm Optimization Ap- proach for Product Design and Manufacturing [ J ]. Interna- tional Journal of Advanced Manufacturing Technology, 2009,40 (5) :617 - 628.
  • 8VIJAYAKUMAR K, PRABHAHARAN G, ASOKAN P, et al. Optimization of Multi-pass Turning Operations Using Ant Colony System [ J ]. International Journal of Machine Tools & Manufacture ,2003,43 ( 15 ) : 1633 - 1639.
  • 9YILDIZ A R. Hybrid Taguchi-Harmony Search Algorithm for Solving Engineering Optimization Problem[ J]. Interna- tional Journal of Industrial Engineering Theory, Apllication and Practice, 2008,15 ( 3 ) :286 - 293.
  • 10ONWUBOLO G C, KUMALO T. Multi-pass Turning Opera- tions Optimization Based on Genetic Algorithms [ J ]. Pro- ceedings of the Institution of Mechanical Engineers : Part B : Journal of Engineering Manufacture, 2001,215 ( 1 ) : 117 - 124.

引证文献9

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部