摘要
针对橡胶结构的材料非线性、几何非线性和接触非线性三种典型综合非线性有限元分析收敛性问题的难点,结合对Yx橡胶密封圈平面应变有限元模型的有限元分析,重点从高阶低阶单元的应用、网格密度、接触刚度及接触算法、载荷步与载荷子步几个方面对非线性计算收敛性的影响进行了讨论论证,为解决和提高计算收敛性给出了一些相应的对策。所述对策能有效改善橡胶结构非线性有限元计算收敛性,并且也部分适用于其他类型的非线性有限元问题的求解设置中。
In focalization at the difficulties of convergence problems in material nonlinear,geometric nonlinear and contact nonlinear that three kinds of typical nonlinear finite element analysis in rubber structure,it combined with FEA of a Yx rubber seal's plane strain finite element model,focused at the discussion and demonstration on the application of high order and lower order elements,grid density,contact stiffness and contact algorithms,loadsteps and substeps,which would affect the convergence of nonlinear calculation,and gave the corresponding countermeasures in solving and improving the convergence.The countermeasures that proposed could improve the convergence in finite element calculation in effectively,and some of the countermeasures also could be used in solving other types of nonlinear finite element problems.
出处
《机械设计与制造》
北大核心
2013年第7期265-268,共4页
Machinery Design & Manufacture
基金
科技支撑计划-工业部分(SBE201300034)