期刊文献+

一种视频雨滴检测与消除的方法 被引量:10

A Method for Detection and Removal of Rain in Videos
下载PDF
导出
摘要 降雨天气往往导致监控视频质量下降.本文提出首先在对数图像处理(Logarithmic image processing,LIP)框架下利用灰色调约束检测出候选雨滴,进而利用主成分分析(Principal component analysis,PCA)方法计算每个候选雨滴的倾斜方向并构建其概率密度分布函数,利用Mean-shift算法估计该分布函数的峰值,作为检测到的雨滴降落方向,然后,通过方向约束去除候选雨滴中的干扰噪声.最后,文章采用一种加权的重构方法消除雨滴.实验证明,算法能够有效检测并去除各种场景中的雨滴. Rain may deteriorate the quality of surveillance videos.In this paper,we propose firstly to detect candidate raindrops in the logarithmic image processing(LIP) framework using constraints of gray tone.Then the tilt angle of each candidate raindrop is calculated using principal component analysis(PCA) and a probability density function of orientation is constructed.Mean-shift is used to estimate the peak of the distribution and it is considered to be the direction of detected falling raindrops,and noise blobs are eliminated by restricting the direction of candidate raindrops.Finally,a weighted composing method is used to remove rain.Experiments have demonstrated that the algorithm is able to detect and remove rain in a variety of scenes.
机构地区 南京大学
出处 《自动化学报》 EI CSCD 北大核心 2013年第7期1093-1099,共7页 Acta Automatica Sinica
基金 国家自然科学基金(61105015) 江苏省自然科学基金(BK2010366) 江苏省科技厅项目(BE2011747)资助~~
关键词 对数图像处理 均值漂移 主成分分析 雨滴消除 Logarithmic image processing(LIP) mean-shift principal component analysis(PCA) rain removal
  • 相关文献

参考文献2

二级参考文献26

  • 1芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 2Wren C R, Azarhayejani A, Darrell T, Pentland A P. Pfinder: real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780-785.
  • 3Cucchiara R, Grana C, Piccardi M, Prati A. Detecting moving objects, ghosts, and shadows in video streams. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1337-1342.
  • 4Power P W, Schoonees J A. Understanding background mixture models for foreground segmentation. In: Proceedings of the Conference on Image and Vision Computing. Auckland, New Zealand: IEEE, 2002. 267-271.
  • 5Han B, Comaniciu D, Zhu Y, Davis L S. Sequential kernel density approximation and its application to real-time vi- sual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(7): 1186-1197.
  • 6Seki M, Wada T, Fujiwara H, Sumi K. Background subtraction based on cooccurrence of image variations. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE. 2003. 65-72.
  • 7Braillon C, Pradalier C, Crowley J L, Laugier C. Realtime moving obstacle detection using optical flow models. In: Proceedings of the Conference on Intelligent Vehicles Symposium. Tokyo, Japan: IEEE, 2006. 466-471.
  • 8He K M, Sun J~ Tang X O. Single image haze removal using dark channel prior. In: Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 1956-1963.
  • 9Navasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision, 2002, 48(3): 233-254.
  • 10Garg K, Nayar S K. Detection and removal of rain from videos. In: Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2004. 528-535.

共引文献16

同被引文献146

引证文献10

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部