期刊文献+

低压涡轮叶栅流动中转捩模型的校验及改进 被引量:4

Transition Model Assessment and Modification in Low-pressure Turbine Cascade
原文传递
导出
摘要 为评估并提高现有转捩模型的预测精度,采用计算流体力学(CFD)软件FLUENT 12.1,选取层流模型、全湍流模型、剪切应力输运(SST)低雷诺数模型、k-kl-ω模型以及γ-Reθ模型对低压涡轮叶栅T106-EIZ进行数值模拟,通过与实验数据的对比校验了后3种模型对于转捩以及相关参数的模拟能力,并对结果以及模型的作用机理进行分析,校验结果表明所有模型都不能准确地预测分离流转捩以及尾迹诱导转捩。选取预测效果较好的γ-Reθ模型进行了修正,提出通过修改间歇因子输运方程中的参数ca1和ca2的方法来修正该模型,结果表明该方法可以提高模拟精度。 In order to assess and improve the prediction accuracy of existing transition models,numerical investigations on low-pressure turbine cascade T106-EIZ are conducted with five models: laminar,turbulence,shear stress transport(SST) low Reynolds model,k-kl-ω model and γ-Reθ model,by using computational fluid dynamics(CFD) software FULENT 12.1.The laminar and turbulence models are used as the baseline models for testing the last three transition models.Their ability to accurately simulate transition and related parameters is also evaluated by comparison with the experimental results.Subsequently,the comparison results and mechanisms of models are analyzed.The results show that no model can accurately predict separated flow transition and wake-induced transition,while the γ-Reθ model is slightly better than the others.A new method of modifying the γ-Reθ model is proposed by correcting the constant ca1 and ca2 in the transport equation of intermittency factor,and the results show that this method is quite effective in improving prediction accuracy.
出处 《航空学报》 EI CAS CSCD 北大核心 2013年第7期1548-1562,共15页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(51006006 51136003) 国家重点基础研究发展计划(2012CB720205) 航空科学基金(2012ZB51014)~~
关键词 转捩模型 γ-Reθ模型 修正 T106-EIZ 低压涡轮叶栅 transition model γ-Reθ model modification T106-EIZ low-pressure turbine cascade
  • 相关文献

参考文献21

  • 1叶建. 非定常环境中叶片边界层时空演化机制的大涡模拟. 北京: 北京航空航天大学能源与动力工程学院, 2008.
  • 2Jone W P, Launder B E. The calculation of low Reynolds number phenomena with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 1973, 16(6): 1119-1130.
  • 3Launder B E, Sharma B. Application of energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1974, 1: 131-137.
  • 4van Driest E R, Blumer C B. Boundary layer transition, free-stream turbulence, and pressure gradient effects. AIAA Journal, 1963, 1(6): 1303-1306.
  • 5Abu-Ghannam B J, Shaw R. Natural transition of boundary layers-the effects of turbulence, pressure gradient, and flow history. Journal of Mechanical Engineering Science, 1980, 22(5): 213-228.
  • 6Mayle R E. The role of laminar-turbulent transition in gas turbine engines. Journal of Turbomachinery, 1991, 113(4): 509-537.
  • 7Fasihfar A, Johnson M W. An improved boundary layer transion correlation. International Gas Turbine and Aeroengine Congress and Exposition. Germany: Department of Mechanical Engineering, The University of Liverpool, 1992: 1-7.
  • 8Praisner T J, Clark J P. Predicting transition in trubomachinery—Part I: a review and new model development. Journal of Turbomachinery, 2007, 129(1): 1-13.
  • 9Edwards J R, Blottner F G, Hassan H G, et al. Development of a one-equation transition/turbulence model. AIAA Journal, 2001, 39(9): 1691-1698.
  • 10Wang C, Perot B. Prediction of turbulent transition in boundary layers using the turbulent potential model. Journal of Tubulence, 2002(3): 1-15.

二级参考文献26

  • 1Franck Bertagnolio, Niels Sorensen, Jeppe Johansen, et al. Wind turbine airfoil catalogue [ EB/OL]. http://www. risoe. dk/ fispubl/VEA/veapdf/ris-r-1280. pdf.
  • 2Menter F R. Zonal two-equation model k-o models for aerodynamic flows [A]. In: 24th Fluid Dynamics Conference [C], Orlando, Florida, 1993.
  • 3Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. AIAA Journal, 1994, 32 (8) : 1598-1605.
  • 4Fluent Inc. FLUENT 6.2 user' s guide [ M ]. Fluent Inc, 2005.
  • 5Fuglsang Peter, Ioannis Antoniou, Dahl Kristian S, et al. Wind tunnel tests of the FFA-W3-241, FFA-W3-301 and NA- CA 63-430 airfoils [EB/OL]. http://www. risoe. dk/rispubl/ VEA/veapdf/ris- r- 1041. pdf.
  • 6Timmer W A, Van Rooij R. Summary of the delft university wind turbine dedicated airfoils[ A]. In: 41st Aerospace Sciences Meeting[ C], Reno, USA, 2003, 488-496.
  • 7Van Rooij R, Timmer W A. Roughness sensitivity considerations for thick rotor blade airfoils [A]. In: 41st Aerospace Sciences Meeting[C], Reno, USA, 2003, 472-480.
  • 8Timmer W A, Van Rooij R. Some aspects of high angle-of attack flow on airfoils for wind turbine application [A]. In: EWEC 2001 Copenhagen[C], Denmark, 2001.
  • 9Dunham J. CFD validation for propulsion system componets [R]. AGARD-AR-355, 1998.
  • 10Gregory-Smith D G. Presentation to QNET CFD workshop [C]//2nd QNET-CFD Workshop on Quality and Trust in the Industrial Applications of CFD, Lucerne, Switzerland: [s. n. ],2002.

共引文献107

同被引文献61

  • 1李维,邹正平,赵晓路.雷诺数对涡轮部件性能的影响[J].航空动力学报,2004,19(6):822-827. 被引量:6
  • 2符松,王亮.湍流转捩模式研究进展[J].力学进展,2007,37(3):409-416. 被引量:46
  • 3伊进宝,乔渭阳,孙大伟.低压涡轮叶栅流动分离主动控制实验研究[J].航空学报,2007,28(5):1055-1061. 被引量:8
  • 4Berry S A, Daryabeigi K, Wurster K, et al. Boundary layer transition on X-43A[J]. Journal of Spacecraft and Rockets, 2010, 47(6):922-934.
  • 5Voland R T, Huebner I. D, McClinton C R. X-43A hy personic vehicle technology development[J]. Acta Astro nautica, 2006, 59(1): 181-191.
  • 6Berry S A, DiFulvio M, Kowalkowski M K. Forced boundary-layer transition on X 43 (Hyper-X) in NASA LaRC 31 Inch Mach 10 air tunnel, NASA TM-210315[R]. Washington: NASA, 2000.
  • 7Berry S A, Auslender A H, Dilley A D, et al. Hypersonic boundary-layer trip development for Hyper-X[J]. Journal of Spacecraft and Rockets, 2001, 38(6): 853-864.
  • 8Holden M S, Wadhams T P, MacLean M. Experimental studies in the LENS supersonic and hypersonic tunnels for hypervelocity vehicle performance and code validation, AIAA-2008-2505[R]. Reston: AIAA, 2008.
  • 9Wadhams T P, MacLean M G, Holden M S. Recent ex perimental studies of high speed boundary layer transition in LENS facilities to further the development of predictive tools for boundary layer transition in flight, AIAA 2012- 0470[R]. Reston: AIAA, 2012.
  • 10Bernardini M, Pirozzoli S, Orlandi P. Compressibility effects on roughness induced boundary layer transition[J]. International Journal of Heat and Fluid Flow, 2012, 35: 45-51.

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部