期刊文献+

基于分块Gabor特征的贝叶斯人脸识别 被引量:2

Block-based Gabor transform for Bayesian face recognition
下载PDF
导出
摘要 对贝叶斯分类中最大似然(ML)公式进行了简化,给出了一种实用的快速计算相似度的方法,在此基础上设计了基于分块Gabor特征提取的贝叶斯人脸识别算法。该算法从原始数字图像出发,先对图像矩阵进行分块,然后对分块子图像进行多分辨率的Gabor特征提取,对每一个特征块设计一个贝叶斯分类器,通过将这些分类器加权平均,得到最后的决策。在FERET人脸数据库的实验结果验证了该方法的有效性。 An improved Maximum Likelihood(ML) measure is proposed, which simplifies the similarity computation in the Bayesian algorithm. And then a novel block-based Gabor transformed for Bayesian face recognition is proposed. The original sample images are divided into smaller sub-images, utilizing the convolution of the sub-images and the Gabor filters to extract features, each sub-image is designed as a ML classifier of Bayesian, by use of weighed average similarity to make the final deci- sion. The experiments on FERET face database have shown the effectiveness of the method.
出处 《计算机工程与应用》 CSCD 2013年第14期199-202,共4页 Computer Engineering and Applications
基金 河南省科技攻关计划项目(No.122102210505 No.12A520026) 河南省基础与前沿技术研究计划项目(No.122300410111)
关键词 人脸识别 GABOR变换 图像分块 最大似然准则(ML) 贝叶斯分类 face recognition Gabor transform image-blocked Maximum Likelihood(ML) Bayesian classifier
  • 相关文献

参考文献7

  • 1Moghaddam B, Jebara T,Pentland A.Bayesian face recogni- tion[J].Pattern Recognition,2000,33( 11 ) : 1771-1782.
  • 2Liu C, Wechsler H.Gabor feature classifier for face recogni- tion[C]//Proceedings of ICCV,2001,2 : 270-275.
  • 3Wang Xiaogang, Tang Xiaoou.Bayesian face recognition using Gabor features[C]//Proceedings of the 2003 ACM SIGMM Workshop on Biometrics Methods and Applications, 2003: 70-73.
  • 4Yang J, Zhang D, Yang J Y.Two-dimensional PCA: a new approach to appearance-based face representation and recog- nition[J].IEEE Trans on Pattern Analysis and Machine Intel- ligence, 2004,26( 1 ) : 131-137.
  • 5Jones C F.Color face recognition using quaternionic Gahor filters[D].Blacksburg, Virginia State, USA.. Virginia Polytechnic Institute and State University ,2004.
  • 6Fumera G, Roli F.A theoretical and experimental analysis of linear combiners for multiple classifier systems[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(6): 942-956.
  • 7Phillips P J, Moon H, Rizvi S A, et al.The FERET evaluation methodology for face recognition algorithms[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2000,22(10): 1090-1104.

同被引文献29

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部