期刊文献+

基于三阶积分链式微分器的带噪声的不确定系统反馈控制

Based on Third-order Integral Chained Differentiator Used in the Feedback Control of Uncertain System with Noise
下载PDF
导出
摘要 工程中,目标信号的加速度是很难通过目标的位置信号求取,因此,微分器的鲁棒性和高阶导数的求取至关重要,同时迅速精确地获得目标的速度和加速度对于控制系统是非常重要的。提出了基于三阶积分链式微分器的带噪声的不确定系统反馈控制设计,微分器算法有多重积分链结构,能够逼近不确定项,对系统的未知状态进行估计。仿真结果表明,微分器的反馈控制具有良好地估计和跟踪效果。 The acceleration of target signal is very difficult to obtain in the targeting location signal in engineering,therefore,robust of the differentiator and high-order derivative countdown is critical to the control system,the speed and acceleration of the target are got rapid precisely,which is very important for the control system.So it is presented in this article that is based on third-order integral chained differentiator used in the feedback control of uncertain system with noise.The algorithm of differentiator has the structure with multiple integral chains,which can approximate the uncertain item and estimates of the unknown state of the system.Simulation results show that the differential feedback control has a good estimation and tracking results.
作者 王鹏云
机构地区 宝鸡文理学院
出处 《电气自动化》 2013年第3期22-23,62,共3页 Electrical Automation
基金 宝鸡文理学院第五批重点建设课程
关键词 反馈控制 积分 链式 微分器 不确定系统 feedback control integral chained differentiator unction system
  • 相关文献

参考文献6

  • 1S. Purwar, I. N. Kar, A. N. Jha. Adaptive control of robot manipulators using fuzzy logic systems under actuator constraints. Fuzzy Sets and Systems, 2005, 152:651 - 664.
  • 2史敬灼,张慧敏.行波超声波电机Lyapunov模型参考自适应转速控制[J].电工技术学报,2011,26(4):44-50. 被引量:10
  • 3周涛,王磊.基于跟踪微分器的模型参考自适应控制[J].电光与控制,2012,19(10):46-49. 被引量:8
  • 4A. Levant. High-order sliding modes, differentiation and output - feedback control. International Journal of Control, 2003, 76 (9/10) :924 - 941.
  • 5L. R. Rabiner, K. Steiglitz. The design of wide-band recursive and nonrecursive digital differentiators. IEEE Trans. Audio Electroacoust, 1970, AU (18) :204 -209.
  • 6SLONTINEJJE,LIWeiping.应用非线性控制[M].程代展,译.北京:机械工业出版社,2006.

二级参考文献20

  • 1傅平,郭吉丰,丁敬,周广睿,沈润杰.基于神经元自适应PID的超声波电机速度位置控制[J].电工技术学报,2007,22(2):28-33. 被引量:20
  • 2Chen Weishan, Shi Shengjun, Liu Yingxiang, et al. A new traveling wave ultrasonic motor using thick ring stator with nested PZT excitation[J]. IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, 2010, 57(5): 1160-1168.
  • 3Pirrotta S, Sinatra R, Meschini A. Evaluation of the effect of preload force on resonance frequencies for a traveling wave ultrasonic motor[J]. IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, 2006, 53(4): 746-753.
  • 4Juang P, Tsai C. Equivalent circuit modeling of an asymmetric disc-type ultrasonic motor[J]. IEEE Trans on Instrumentation and Measurement, 2009, 58(7): 2351-2357.
  • 5Faajeng L, Syuanyi Chen, Pohuan Chou, et al. Interval type-2 fuzzy neural network control for X-Y-Theta motion control stage using linear ultrasonic motors[J]. Neurocomputing, 2009, 72(4-6): 1138-1151.
  • 6Mainali K, Panda S K, Xu J X, et al. Repetitive position tracking performance enhancement of linear ultrasonic motor with sliding mode-cum-iterative learning control[C]. Proceedings of the IEEE Conference on Mechatronics, St. Louis, 2004: 352-357.
  • 7Giraud Frederic, Lemaire Semail Betty, Aragones Julien, et al. Precise position control of a travelingwave ultrasonic motor[J]. IEEE Trans. on Industry Applications, 2007, 43(4): 934-941.
  • 8Yoshida Tomohiro, Senjyu Tomonobu, Nakamura Mitsuru, et al. Position control of ultrasonic motors using dead-zone compensation with fuzzy neural network[J]. Electric Power Components and Systems, 2006, 34(11): 1253-1266.
  • 9Bazrafshan Fazel, Rasti Behnood, Mojallali Hamed. A fuzzy modeling and position control of a traveling wave ultrasonic motor[C]. Proceedings of the 2nd International Conference on Computer and Automation Engineering, 2010, 5:457-461.
  • 10Senjyu T, Kashiwagi T, Uezato K. Position control of ultrasonic motors using MRAC and dead-zone compensation with fuzzy inference[J]. IEEE Trans. on Power Electronics, 2002, 17(2): 265-272.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部