期刊文献+

逆流热源塔传热传质模型建立与凝水调节的可行性 被引量:7

Modeling of heat and mass transfer in counterflow heat-source tower and feasibility study of moisture condensation control
下载PDF
导出
摘要 为探讨通过调节运行参数对热源塔内凝水量进行控制的可行性,在建立逆流热源塔内溶液与空气间热质传递数学模型并对其验证的基础上,深入研究了以乙二醇水溶液为工作介质热源塔的入塔空气湿度和入塔溶液温度对塔内凝水量的影响规律.结果表明:当热源塔入塔空气含湿量从4.9 g/kg减小至2.2 g/kg时,塔内凝水量从1.98 g/s减小至-0.40 g/s;当入塔溶液温度从-5℃升高到-1℃时,塔内凝水量由0.56 g/s减小至-0.07 g/s.通过降低入塔空气湿度或者提高入塔溶液温度,可减少热源塔内凝水量,甚至实现溶液浓度再生,从而为减少系统溶液再生需求,高效解决热源塔热泵的溶液再生问题提供了新思路. To study the feasibility of moisture condensation control in heat-source tower by operating parameter regulation,a mathematic model of heat and mass transfer betw een air and solution in the counterflow heat-source tow er w as developed and validated.The effect of the humidity ratio of inlet air and the solution inlet temperature on moisture condensation in the heat-source tow er w as investigated by using ethylene glycol aqueous solution as w ork fluid.The results show that the rate of moisture condensation decreases from 1.98 g/s to-0.40 g/s as the humidity ratio of inlet air decreases from 4.9 g/kg to 2.2 g/kg.The rate of moisture condensation decreases from 0.56 g/s to-0.07 g/s w ith a rise in the solution inlet temperature from-5 ℃ to-1 ℃.The rate of moisture condensation in the heat-source tow er decreases w ith the decrease of the humidity ratio of inlet air and the increase of the solution inlet temperature.And solution’s reconcentration can even be realized by heat-source tow er itself.It is a new w ay to reduce the system demand of solution reconcentration and solve the solution reconcentration problem efficiently.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第4期788-792,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(51106023) "十二五"国家科技支撑计划资助项目(2011BAJ03B14) 江苏省自然科学基金重点资助项目(BK2010029)
关键词 热源塔 传质 乙二醇 凝水控制 heat-source tower mass transfer ethylene glycol moisture condensation control
  • 相关文献

参考文献10

  • 1文先太,梁彩华,张小松,张跃,周晓林.热源塔传质特性的分析和实验研究[J].化工学报,2011,62(4):901-907. 被引量:29
  • 2王宇.不同溶质类型对热源塔性能的影响研究[D].长沙:湖南大学土木工程学院,2011.
  • 3Fujita T, Kikuchi S. Vapor pressure of aqueous solu-tions of ethylene glycol [ J]. Transactions of the JapanSociety of Refrigerating and Air Conditioning Engi-neers, 2011,6(2) : 183 -186.
  • 4Elsarrag E. Moisture removal rate for air dehumidiflca-tion by triethylene glycol in a structured packed column[J]. Energy Conversion and Management, 2007 , 48(1): 327 -332.
  • 5Moon C G, Bansal P K,Jain S. New mass transfer per-formance data of a cross-flow liquid desiccant dehumidi-fication system [ J]. International Journal of Refrigera-tion, 2009, 32(3) : 524-533.
  • 6Fumo N, Goswami D Y. Study of an aqueous lithiumchloride desiccant system; air dehumidification anddesiccant regeneration [ J]. Solar Energy,2002,72(4): 351 -361.
  • 7Fujita T, Kametani S. Thermal characteristics of heatingtowers [ J]. Transactions of the Japan Society of Refrig-erating and Air Conditioning Engineers,2012,6(3):265-274.
  • 8Zhang L,Hihara E, Matsuoka F,et al. Experimentalanalysis of mass transfer in adiabatic structured packingdehumidifier/regenerator with liquid desiccant [ J]. In-ternational Journal of Heat and Mass Transfer,2010,53(13/14) : 2856-2863.
  • 9刘晓华,易晓勤,江亿.两种常用液体吸湿剂传质性能的比较[J].化工学报,2009,60(3):567-573. 被引量:12
  • 10Chen X Y, Li Z, Jiang Y,et al. Analytical solution ofadiabatic heat and mass transfer process in packed-typeliquid desiccant equipment and its application [ J ]. So-lar Energy, 2006 , 80( 11) : 1509 ~ 1516.

二级参考文献31

  • 1刘晓华,张岩,张伟荣,谢晓云,江亿.溶液除湿过程热质交换规律分析[J].暖通空调,2005,35(1):110-114. 被引量:26
  • 2柳建华,邬志敏,丁育红,顾卫国.液体除湿空调系统的除湿器性能试验[J].流体机械,2005,33(12):61-64. 被引量:17
  • 3Patnaik S, Lenz T G, Lof G O G. Performance studies for an experimental solar open-cycle liquid desiccant air dehumidification system. Solar Energy, 1990, 44 (3) : 123-135
  • 4Potnis S V, Lenz T G. Dimensionless mass-transfer correlations for packed bed liquid-desiccant contactors. Industrial & Engineering Chemistry Research, 1996, 35 (11): 4185-4193
  • 5Liu X H, Jiang Y, Chang X M, Yi X Q. Experimental investigation of the heat and mass transfer between air and liquid desiccant in a cross flow regenerator. Renewable Energy, 2007, 32 (10): 1623-1636
  • 6Lazzarin R M, Gasparella A, Longo G A. Chemical dehumidification by liquid desiccants: theory and experiment. International Journal of Refrigeration, 1999, 22 (4): 334 347
  • 7Longo G A, Gasparella A. Experimental and theoretical analysis of heat and mass transfer in a packed column dehumidifier/regenerator with liquid desiccant. International Journal of Heat and Mass Transfer, 2005, 48 (25/26): 5240-5254
  • 8Liu X H, Jiang Y, Xia J J, Chang X M. Analytical solutions of coupled heat and mass transfer processes in liquid desiccant air dehumidifier/regenerator. Energy Conversion and Management, 2007, 48 (7) : 2221-2232
  • 9Suzuki K, Ohya N. Dehumidification Design(除湿设计).Li Xianrui(李先瑞),trans. Beijing : Chinese Architectural Industrial Press, 1980
  • 10Fumo N, Goswami D Y. Study of an aqueous lithium chloride desiccant system: air dehumidification and desiccant regeneration. Solar Energy, 2002, 72 ( 4 ) : 351-361

共引文献39

同被引文献90

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部