期刊文献+

Microstructure and properties of A2017 alloy strips processed by a novel process by combining semisolid rolling,deep rolling,and heat treatment 被引量:2

Microstructure and properties of A2017 alloy strips processed by a novel process by combining semisolid rolling,deep rolling,and heat treatment
下载PDF
导出
摘要 A novel short process for producing A2017 alloy strips with notable features of near net shape, saving energy, low cost, and high product performance was developed by combining semisolid rolling, deep rolling, and heat treatment. The microstructure and properties of the A2017 alloy strips were investigated by metallographic microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, tensile testing, and hardness measurement. The cross-sectional microstructure of the A2017 alloy strips is mainly composed of near-spherical primary grains. Many eutectic phases CuA12 formed along primary grain boundaries during semisolid rolling are crushed and broken into small particles. After solution treatment at 495℃ for 2 h the eutectic phases at grain boundaries have almost dissolved into the matrix. When the solution treatment time exceeds 2 h, grain coarsening happens. More and more grain interior phases precipitate with the aging time prolonging to 8 h. The precipitated particles are very small and distribute homogenously, and the tensile strength reaches its peak value. When the aging time is prolonged to 12 h, there is no obvious variation in the amount of precipitated phases, but the size and spacing of precipitated phases increase. The tensile strength of the A2017 alloy strips produced by the present method can reach 362.78 MPa, which is higher than that of the strips in the national standard of China. A novel short process for producing A2017 alloy strips with notable features of near net shape, saving energy, low cost, and high product performance was developed by combining semisolid rolling, deep rolling, and heat treatment. The microstructure and properties of the A2017 alloy strips were investigated by metallographic microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, tensile testing, and hardness measurement. The cross-sectional microstructure of the A2017 alloy strips is mainly composed of near-spherical primary grains. Many eutectic phases CuA12 formed along primary grain boundaries during semisolid rolling are crushed and broken into small particles. After solution treatment at 495℃ for 2 h the eutectic phases at grain boundaries have almost dissolved into the matrix. When the solution treatment time exceeds 2 h, grain coarsening happens. More and more grain interior phases precipitate with the aging time prolonging to 8 h. The precipitated particles are very small and distribute homogenously, and the tensile strength reaches its peak value. When the aging time is prolonged to 12 h, there is no obvious variation in the amount of precipitated phases, but the size and spacing of precipitated phases increase. The tensile strength of the A2017 alloy strips produced by the present method can reach 362.78 MPa, which is higher than that of the strips in the national standard of China.
出处 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第8期770-778,共9页 矿物冶金与材料学报(英文版)
基金 financially supported by the National Natural Science Foundation for Outstanding Young Scholars of China(No.51222405) the National Natural Science Foundation of China(No.51034002) the Fok Ying Tong Education Foundation(No.132002) the Basic Scientific Research Operation of Center Universities(Nos. N120502001 and N120602002) the Major State Basic Research Development of China(No.2011CB610405)
关键词 aluminum alloys semisolid rolling heat treatment microstructure mechanical properties aluminum alloys semisolid rolling heat treatment microstructure mechanical properties
  • 相关文献

参考文献4

二级参考文献6

共引文献14

同被引文献10

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部