期刊文献+

一种尺度和旋转自适应的目标跟踪算法 被引量:4

A scale and rotation adaptive algorithm for object tracking
下载PDF
导出
摘要 为了解决目标跟踪中的尺度和旋转问题,提出一种基于尺度不变特征变换(SIFT)和均值漂移的目标跟踪算法。该算法首先检测模板区域和目标区域在尺度空间中的极值点,然后通过拟合三维二次函数精确定位特征点的位置和尺度,接着对目标区域和模板区域的特征点进行匹配,并根据相邻帧之间尺度和角度的连续性,去除误匹配,最后利用正确匹配的特征点中的尺度和角度信息,计算被跟踪目标的尺度和旋转角度。研究结果表明:当被跟踪目标的角度和尺度发生变化时,该算法皆具有较好的跟踪效果。 In order to solve the problem of scale and rotation in image object tracking, a novel object tracking algorithm based on Scale Invariant Feature Transform (SIFT) and Mean Shift was proposed. Firstly, scale-space extrema in the model area and object area are detected and accurate positions and scales of the feature points were located by fitting 3D quadratic fimctions. Secondly, feature points in model area and object area were matched and the mismatched points were eliminated according to continuity of scale and angle between adjacent frames. Lastly, the scale and rotation angle of the object being tracked were calculated by using the scale and angle information which was provided by the feature points correctly matched. Experimental results show that the proposed algorithm has good tracking effect no matter whether the scale or the angle of the object changes.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第6期2354-2360,共7页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(61203375 61203083 51175261) 济南大学博士基金资助项目(XBS1241)
关键词 目标跟踪 尺度不变特征变换(SIFT) 均值漂移算法 尺度空间 object tracking Scale Invariant Feature Transform (SIFT) Mean Shift algorithm scale space
  • 相关文献

参考文献15

  • 1Abramson H, Avidan S. Tracking through scattered occlusion[C]/12011 Conference on Computer Vision and Pattern Recognition. Colorado: IEEE Computer Society, 2011: 1-8.
  • 2Han Z, Ye Q, Jiao J. Combined feature evaluation for adaptive visual object tracking[J]. Computer Vision and Image Understanding, 2011, 115(1): 69-80.
  • 3Comaniciu D, Ramesh V, Meer P. Real-Time Tracking of Non-Rigid Objects Using Mean Shift[C]//Proceeding of IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island: IEEE Computer Society, 2000: 142-149.
  • 4Chia Y S, Kow W Y, Khong W L, et al. Kernel-based object tracking via particle filter and mean shift algorithm[C]//20l1 11th International Conference on Hybrid Intelligent Systems (HIS). Malacca: IEEE Computer Society, 2011: 522-527.
  • 5Li P. An adaptive binning color model for mean shift tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008,18(9): 1293-1299.
  • 6Khan Z H, Gu I Y, Backhouse A G. Robust visual object tracking using multi-mode anisotropic mean shift and particle filters[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(1): 74-87.
  • 7Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575.
  • 8Liu C Y, Yung N. Scale-adaptive spatial appearance feature density approximation for object tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1): 284-290.
  • 9王长军,朱善安.基于Mean Shift的目标平移与旋转跟踪[J].中国图象图形学报,2007,12(8):1367-1371. 被引量:10
  • 10Drareni J, Roy S. A Simple oriented Mean-Shift algorithm for tracking[J]. Image Analysis and Recognition, 2007, 18(4): 558-568.

二级参考文献30

  • 1查宇飞,毕笃彦.一种基于粒子滤波的自适应运动目标跟踪方法[J].电子与信息学报,2007,29(1):92-95. 被引量:19
  • 2Zhou S K, Chellappa R, Moghaddam B. Visual tracking and recognition using appearance adaptive models in particle filters[J]. IEEE Transactions on Image Processing, 2004, 13(11): 1491-1506.
  • 3Wang H Z, Suter D, Schindler K, et al. Adaptive object tracking based on an effective appearance filter[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(9): 1661- 1667.
  • 4Takala V, Pietikainen M. Multi-object tracking using color, texture and motion[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2007: 1-7.
  • 5Li P H, Wang H J. Object tracking with particle filter using color information[M]//Lecture Notes in Computer Science, vol.4418. Berlin, Germany: Springer-Verlag, 2007: 534-541.
  • 6Zhou H Y, Yuan Y, Zhang Y, et al. Non-rigid object tracking in complex scenes[J]. Pattern Recognition Letters, 2009, 30(2): 98-102.
  • 7Yilmaz A, Javed O, Shah M. Object tracking: A survey[J]. ACM Computing Surveys, 2006, 38(4): 45p.
  • 8Rathi Y, Vaswani N, Tannenbaum A, et al. Tracking deforming objects using particle filtering for geometric active contours[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8): 1470-1475.
  • 9Levi K, Weiss Y. Learning object detection from a small number of examples: The importance of good features[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2004: 1153-1160.
  • 10Jepson A D, Fleet D J, El-Maraghi T E Robust online appearance models for visual tracking[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2001: I415-I422.

共引文献37

同被引文献60

  • 1王明佳,武治国,韩广良,王延杰,张叶.自适应窗口选取的Mean-Shift目标跟踪[J].光子学报,2012,41(1):67-71. 被引量:5
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 3贾静平,柴艳妹,赵荣椿.一种健壮的目标多自由度Mean Shift序列图像跟踪算法[J].中国图象图形学报,2006,11(5):707-713. 被引量:10
  • 4钱惠敏,茅耀斌,王执铨.自动选择跟踪窗尺度的Mean-Shift算法[J].中国图象图形学报,2007,12(2):245-249. 被引量:35
  • 5Oron S, Bar^Hillel A, Levi D, et al. Locally orderless tracking[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recog-nition ,2012: 1940 - 1947.
  • 6Nummiaro K,Koller-Meier E, Van Gool L. An adaptive color-based particle filter[J], Image and Vision Computing , 2003, 21(1): 99-110.
  • 7Mei X,Ling H. Robust visual tracking and vehicle classificationvia sparse representation[J]. IEEE Trans, on Pattern Analysisand Machine Intelligence y 33(11) : 2259 - 2272.
  • 8Hess R, Fern A. Discriminatively trained particle filters for complexmulti-object tracking[C] // Proc. of the IEEE Conference on Com-puter Vision and Pattern Recognition, 2009 : 240 - 247.
  • 9Zhang K, Zhang L,Yang M H. Real-time compressive tracking[C3//Proc. of the 12th European Conference on Computer Vision,2012: 864- 877.
  • 10Sanjeev A M,Maskell S, Gordon N,et al. A tutorial on particlefilters for online nonlinear/non-Gaussian Bayesian tracking [J],IEEE Trans, on Signal Processing ,2002, 50(2) : 174 ~ 188.

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部