期刊文献+

云环境下基于MKd-Tree的大规模图数据索引技术

Large Scale Graph Data Index Based on MKd-Tree in Cloud Environment
下载PDF
导出
摘要 由于高维属性和海量数据所带来的影响,数据管理需要相当高的计算负载,传统的集中索引技术已经变得不切实际。为满足数据的快速增长、海量和高维特性的要求,实现了一个高层次的分布式树形索引结构框架MRC-Tree。基于MRC-Tree框架基础上,提出了两种MKd-Tree索引结构构建方法,即OMKd-Tree和MMKd-Tree。理论分析和实验结果表明,基于MRC-Tree框架的MKd-Tree索引结构构建方法具有良好的可扩展性和较高的检索效率。 Managing the high-dimensional, large-scale data needs extremely high computational load. Traditional centralized indexing techniques apparently become impractical. To address the demanding needs caused by this rapidly growing, large-scale, and high-dimensional information ecology, a high-level distributed framework for searches and computations on tree indexing structures based on Map-Reduce in the Hadoop environment, MRC- Tree (Computation based on Map-Reduce on tree structures) is achieved. And then, two MKd-Tree(Kd-Tree based on Map-Reduce) index structures based on MRC-Tree framework, OMKd-Tree (Build one distributed Kd- Tree based on Map-Reduce) and MMKd-tree (Build multiple Kd-Trees by splitting data equally based on Map- Reduce) are proposed. Finally, the theoretical analysis and experiment results illustrate that the methods are highly effective and extensible to the similarity search in high-dimensional data environment.
作者 雷婷
出处 《电讯技术》 北大核心 2013年第7期909-916,共8页 Telecommunication Engineering
关键词 高维数据库 图数据 索引结构 分布式树形索引结构框架 Map—Reduce框架 MKd-Tree high-demensional database graph data index structure distributed tree index structure framework Map-Reduce framework MKd-Tree
  • 相关文献

参考文献13

  • 1Dean J, Ghemawat S. Map-Reduce: Simplified Data Process- ing on Large clusters [ J]. ACM Communication, 2008, 51 (1):107- 113.
  • 2Heger D A. A Disquisition on the Performance Behavior of Binary Search Tree Data Structures[J]. European Journal for the Informatics Professional, 2004, 5 (5) : 67 - 75.
  • 3Comer D. The Ubiquitous B-Tree[ J]. ACM Computing Sur- veys, 1979,11(2) : 121 - 137.
  • 4Guttrnan A. R-Trees: A Dynamic Index Structure for Spatial Searching [ C ]//Proceedings of the 1984 ACM SIGMOD Inter- national Conference on Management of data. New York: ACM, 1984:47 - 57.
  • 5Bentley J L. Multidimensional binary search trees used for as-sociative searching [ J ]. ACM Communication, 1975,18 (9) : 509 - 517.
  • 6Abhinav SARJE, Srinivas ALURU. A Map-Reduce Style Framework for Trees[ R]. Technical Report,2009.
  • 7Sarje A,Aluru S. A Map-Reduce Style Framework for Com- putations on Trees [ C]//Proceedings of 2010 39th Interna- tional Conference on Parallel Processing. San Diego, Californi- a, USA: IEEE, 2010: 343 - 352.
  • 8杨恒,王庆,何周灿.面向高维图像特征匹配的多次随机子向量量化哈希算法[J].计算机辅助设计与图形学学报,2010,22(3):494-502. 被引量:9
  • 9Silpal-Anan C, Hardey R. Optimised KD-trees for fast image descriptor matching [ C ]//Proceedings of 2008 IEEE Confer- enee on Computer Vision and Pattern Recognition. Anchor- age, AK: IEEE, 2008 : 1 - 8.
  • 10过洁,徐晓旸,潘金贵.虚拟场景的一种快速优化Kd-Tree构造方法[J].电子学报,2011,39(8):1811-1817. 被引量:10

二级参考文献39

  • 1卢炎生,饶祺.一种LSH索引的自动参数调整方法[J].华中科技大学学报(自然科学版),2006,34(11):38-40. 被引量:6
  • 2Schaffalitzky F, Zisserman A. Multi-view matching for unordered image sets, or "how do I organize my holiday snaps?"[C] //Proceedings of the 7th European Conference on Computer Vision, Copenhagen, 2002 : 414-431.
  • 3Snavely N, Seitz S M, Szeliski R. Photo tourism: exploring photo collections in 3D [J]. ACM Transactions on Graphics, 2006, 25(3): 835-846.
  • 4Mikolajczyk K, Leibe B, Schiele B. Local features for object class recognition [C] //Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, 2005: 1792-1799.
  • 5Brown M, Lowe D G. Automatic panoramic image stitching using invariant features [J]. International Journal of Computer Vision, 2007, 74(1): 59-73.
  • 6Yao J, Cham W K. Robust multi-view feature matching from multiple unordered views [J]. Pattern Recognition, 2007, 40 (11): 3081-3099.
  • 7Sivic J, Zisserman A. Video Google: a text retrieval approach to object matching in videos [C] //Proceedings of the 9thIEEE International Conference on Computer Vision, Nice, 2003:1470-1477.
  • 8Lowe D G. Distinctive image features from scale invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2).. 91-110.
  • 9Ke Y, Sukthankar R. PCA-sift: more distinctive representation for local image descriptors [C] //Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington D C, 2004 : 506-513.
  • 10Mikolajczyk K, Schmid C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (10): 1615-1630.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部