期刊文献+

轴对称平面应变问题的广义热弹性解 被引量:4

Generalized thermoelastic solutions for the axisymmetric plane strain problem
原文传递
导出
摘要 超常传热条件下,热扰动在介质内以有限速度传播,导致材料的热力学行为较在常规传热下具有很大的不同.本文围绕轴对称平面应变问题展开研究,借助于Laplace正逆变换及其极限特性以及贝塞尔函数的渐近公式,推导了基于不同广义热弹性理论模型下轴对称平面应变问题的热弹性解,并对包含圆孔的无限大轴对称结构在内表面受热冲击作用的广义热弹性行为进行了分析.研究发现,当热扰动以有限速度传播时,各物理场的分布呈现阶段性分布,且在波前位置处,温度场和应力场存在阶跃现象;对于各物理场的描述,L-S和G-N理论给出相近的结果,而G-L理论则在描述位移场和应力场的分布时给出了反常的结果.利用本文推导得到的热弹性解可以清楚地获取各物理场与特征参量之间的函数关系,并可以准确地捕捉到波前的阶跃行为,便于超常传热行为的理论分析. Thermal disturbance propagates in the elastic medium with a finite speed during the transient heat transfer, which leads to the thermal-mechanical behavior of materials being significantly different than that of conventional heat transfer. The axisymmetric plane strain problem is investigated in this paper, the generalized thermoelastic solutions for different generalized thermoelasticity are derived by means of the Laplace transform and its limit theorem and the asymptotic formulas of Bessel functions. A case of an infinite axisymmetric medium with a cylindrical hole under thermal shock is analyzed. It is pointed out that each of physical field has a phased distribution when the propagation of thermal disturbance with a finite speed, and both the temperature and stresses have jumps at the location of thermal elastic wavefront and thermal wavefront. The L-S and G-N theories predict similar patterns for the distributions of displacement, temperature and stresses in the transient thermal shock problem, but for G-L theory a Dirac-delta-type result for the stresses is predicted and the displacement is discontinuous at both the wavefronts.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2013年第8期956-964,共9页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金(批准号:11102073) 中国博士后科学基金(编号:2012M511207) 江苏大学高级人才专项基金(编号:10JDG055) 江苏高校优势学科建设工程(PAPD)资助项目
关键词 广义热弹性解 轴对称平面应变 热冲击 超常传热 generalized thermoelastic solutions axisymmetric plane strain thermal shock transient heat transfer
  • 相关文献

参考文献19

  • 1Herwig H,Beckert K.Experimental evidence about the controversy concerning Fourier and non-Fourier heat conduction in materials with a nonhomogeneous inner structure.Heat Mass Transfer,2000,36(5):387-392.
  • 2过增元.国际传热研究前沿──微细尺度传热[J].力学进展,2000,30(1):1-6. 被引量:156
  • 3Lord H W,Shulman Y.A generalized dynamic theory of thermoelasticity.J Mech Phys Solids,1967,15(5):299-309.
  • 4Green A E,Lindsay K A.Thermoelasticity.J Elast,1972,2(1):1-7.
  • 5Green A E,Naghdi P M.Thermoelasticity without energy dissipation.J Elast,1993,31(3):189-208.
  • 6田晓耕,沈亚鹏.广义热弹性问题研究进展[J].力学进展,2012,42(1):18-28. 被引量:27
  • 7Chandrasekharaiah D S,Srinath K S.One-dimensional waves in a thermoelastic half-space without energy dissipation.Int J Eng Sci,1996,34(15):1447-1455.
  • 8Bagri A,Eslami M R.A unified generalized thermoelasticity solution for cylinders and spheres.Int J Mech Sci,2007,49(12):1325-1335.
  • 9Kumar R,Devi S.Thermomechanical deformation in porous generalized thermoelastic body with variable material properties.Struct Eng Mech,2010,34(2):285-300.
  • 10Babaei M H,Chen Z T.Transient thermopiezoelectric response of a one-dimensional functionally graded piezoelectric medium to a moving heat source.Arch Appl Mech,2010,80(7):803-813.

二级参考文献67

共引文献191

同被引文献53

  • 1Herwig H, Beckert K. Experimental evidence about the controversy concerning Fourier and non-Fourier heat conduction in materials with a nonhomogeneous inner structure. Heat Mass Transfer, 2000, 36(5): 387-392.
  • 2Lord HW, Shulman Y. A generalized dynamical theory of thermoe- lasticity. Journal of the Mechanics and Physics of Solids, 1967, 15(5): 299-309.
  • 3Green AE, Lindsay KA. Thermoelasticity. Journal of Elasticity, 1972, 2(1): 1-7.
  • 4Green AE, Naghdi PM. Thermoelasticity without energy dissipa- tion. Journal of Elasticity, 1993, 31(3): 189-208.
  • 5Youssef HM. Theory of two-temperature thermoelasticity without energy dissipation. Journal of Thermal Stresses, 2011, 34(2): 138- 146.
  • 6Possikhin YA, Shitikova MV. Application of fractional calculus to dynamic problems of linear and non linear hereditary mechanics ofsolids. Applied Mechanics Reviews, 1997, 50(1 ): 15-67.
  • 7Youssef HM. Theory of fractional order generalized thermoelastic- ity. ASME Journal of Heat Transfer, 2010, 132(6): 061301-7.
  • 8Sherief HH, E1-Sayed AMA, Abd E1-Latief AM. Fractional or- der theory of thermoelasticity. International Journal of Solids and Structures, 2010, 47(2): 269-275.
  • 9Youssef HM, Al-Lehalbi EA. Fractional order generalized thermoe- lastic half-space subjected to ramp-type heating. Mechanics Re- search Communications, 2010, 37(5): 448-452.
  • 10Kothari S, Mukhopadhyay S. A problem on elastic half space un- der fractional order theory of thermoelasticity. Journal of Thermal Stresses, 2011, 34(7): 724-739.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部