摘要
Discrete element model was developed to simulate the ellipsoidal particles moving in the moving bed. Multi-element model was used to describe a ellipsoidal particle, the contact detection algorithm of ellipsoidal particle was developed, and both contact force and gravity force were considered in the models. The simulation results were validated by our experiment. Three algorithms for representing an ellipsoidal particle were compared in macro and micro aspects. The results show that there exists big difference in the microscopic parameters such as kinetic energy, rotational kinetic energy, deformation, contact force and collision number which leads to the difference of macroscopic parameters. The relative error in the discharge rate and tracer particle position is the largest between 3-tangent-element representation and experimental results. The flow pattern is similar for the 5-element and 3-intersection representations. The only difference is the discharge rate of 5-element representation is larger than the experimental value and that of the 3-intersection representation has the contrary result. Finally the 3-intersection- element reoresentation is chosen in the simulation due to less comouting time than that of the 5-element renresentation.
Discrete element model was developed to simulate the ellipsoidal particles moving in the moving bed.Multi-element model was used to describe a ellipsoidal particle,the contact detection algorithm of ellipsoidal particle was developed,and both contact force and gravity force were considered in the models.The simulation results were validated by our experiment.Three algorithms for representing an ellipsoidal particle were compared in macro and micro aspects.The results show that there exists big difference in the microscopic parameters such as kinetic energy,rotational kinetic energy,deformation,contact force and collision number which leads to the difference of macroscopic parameters.The relative error in the discharge rate and tracer particle position is the largest between 3-tangent-element representation and experimental results.The flow pattern is similar for the 5-element and 3-intersection representations.The only difference is the discharge rate of 5-element representation is larger than the experimental value and that of the 3-intersection representation has the contrary result.Finally the 3-intersectionelement representation is chosen in the simulation due to less computing time than that of the 5-element representation.
基金
Supported by the Major State Basic Research Development Program of China (2011CB201505), the National Natural Science Foundation of China (50976025) and the Key Proj ect.of Science and Technology of Henan Province (12B610012).