期刊文献+

尺度不变特征变换算子综述 被引量:15

Summarization of the scale invariant feature transform
原文传递
导出
摘要 随着计算机软件与硬件技术的发展,计算机视觉算法逐渐成为图像处理领域的研究热点。其中SIFT(scale invariant feature transform)算法是目前机器视觉领域应用最成功的算法之一。由于在尺度不变、旋转不变、光照不变等方面的独特优势,SIFT被广大视觉领域的研究者借鉴与学习。但是SIFT算法本身也存在一些问题,如仿射性能不太理想,计算复杂度过高等,因此针对它的多种改进算法不断出现。本文对SIFT的发展历史、SIFT算法的演变以及它不同领域的典型应用给出了一个比较全面的综述,比较了各类算法的优缺点。最后给出了该算法未来可能的发展方向,为视觉研究者提供参考。 With the development of software and hardware technique, computer vision has become a hot research fields in image processing. Scale invariant feature transform (SIFT) is one of the most successful vision algorithm nowadays and it is widely studied by the computer vision community because of its unique features.SIFT is scale invariant, rotation invariant and illumination invariant. However, it also has some problems such as it is only part affine has a rather the high computation complexity. Many extended or modified algorithms of the SIFT are developed unceasingly. In this paper, we summarize the history, the evolved processing, and the application of the SIFT and compares those algorithm effects. At last, the paper discusses the feature direction and provides reference for computer vision researchers.
出处 《中国图象图形学报》 CSCD 北大核心 2013年第8期885-892,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(60475024 60872076) 航天技术创新基金项目(2006AA09Z203) 湖南省科技计划(2010GK3012)
关键词 尺度不变 SIFT 计算机视觉 图像匹配 scale invariant scale invariant feature transform (SIFT) computer vision image match
  • 相关文献

参考文献64

  • 1Moravec H. Rover visual obstacle avoidance [ C]//Proceedings of International Joint Conference on Artificial Intelligence. Vancou- ver, Canada: University Of British Columbia, 1981:785-790.
  • 2Harris C, Stephens M. A combined comer and edge detector [C]//Proceedings of the4th Alvey Vision Conference. Manches- ter, UK:IEEE, 1988 : 147-151.
  • 3Mikolajczyk K, Schmid C. Indexing based on scale invariant inter- estpoints[ C]//Proceedings of the 8th International Conference on Computer Vision. Vancouver,Canada: IEEE, 2001 : 525-531.
  • 4Mikolajczyk K,Schmid C. An affine invariant interest point de- tector [ C]// Proceedings of the 8th International Conference on Computer Vision. Vancouver, Canada: IEEE, 2002 : 128-142.
  • 5Lindeberg T. Scale-space theory : a basic tool for analyzing struc- tures at different scales[ J]. Journal of applied statistics, 1994, 21:224-270.
  • 6Lowe, D G. Object recognition from local scale-invariant features [ C ]//Proceedings of International Conference on Computer Vision. Corfu, Greece: IEEE, 2009 : 1150-1157.
  • 7Lowe D G. Distinctive image features from scale-invariant key- points [ J ] . International Journal of Computer Vision, 2004, 60(2) :91-110.
  • 8Lowe D G. Towards a computational model for object recognition in IT cortex [ C ]//Proceedings of the 1st IEEE International Workshop on Biologically Motivated Computer Vision. Seoul, Ko- rea : IEEE, 2000 : 20-31.
  • 9Mikolajczyk K, Schmid C. A performance evaluation of local descriptors[ C]//Proceedings of International Conference on Com- puter Vision and Pattern Recognition. Madison, USA: IEEE, 2003 : 17-122.
  • 10Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representa- tion for local image descriptors [ C ]//Proceedings of CVPR. Washington DC, USA : IEEE,2004 : 506-513.

二级参考文献93

共引文献245

同被引文献111

  • 1熊凌.计算机视觉中的图像匹配综述[J].湖北工业大学学报,2006,21(3):171-173. 被引量:22
  • 2李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 3张小洪,李博,杨丹.一种新的Harris多尺度角点检测[J].电子与信息学报,2007,29(7):1735-1738. 被引量:79
  • 4赵滨基于机载光电测量系统的目标定位精度研究[D].南京:南京航空航天大学,2012.
  • 5高健,黄心汉,彭刚,王敏,吴祖玉.基于彩色的SIFT特征点提取与匹配[J].计算机工程与应用,2007,43(34):10-12. 被引量:8
  • 6Lowe D G.Distinctive image features from scales-invariant keypoints[J].Ijcv,2004,60(2):91-110.
  • 7Herbert Bay,Andreas Ess,Tinne Tuytelaars,Luc Van GooI.SURF: Speeded Up Robust Features[J].Computer Vision and Image Understanding,2008,110(3):346-359.
  • 8Marius M,David G L.Fast approximate nearest neighbors with automatic algorithm configuration[C].Proceedings of International Conference on Computer Vision Theory and Application. Lison,Portugal:Springer,2009:1 - 10.
  • 9Marius M,Radu B R,Gary B,etal.REIN-a fast,robust,Scalable recognition infrastructure[C].Proceedings of International Conference on Robotics and Automation.Shanghai,China:IEEE,2011:2939-2946.
  • 10Marius M,David G L.Fast matching of binary features[C]. Proceedings of the Conference on Computer and Robot Vision. Toronto,Canada:IEEE,2012:404-410.

引证文献15

二级引证文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部