期刊文献+

一种自适应相位旋转的二进制量子蚁群算法

Binary Quantum Ant Colony Algorithm based on adaptive phase rotation
下载PDF
导出
摘要 基于量子进化理论以及蚂蚁群体的寻优策略,结合一种二进制量子蚁群算法,提出了一种自适应相位旋转的二进制量子蚁群算法(Binary Quantum Ant Colony Optimization Algorithm,BQACO)。该算法采用量子比特概率幅表示蚁群信息素,利用伪随机选择策略实现蚂蚁的位置移动,通过自适应相位旋转以及变异操作,实现蚂蚁信息素的动态更新,并有效降低算法早熟收敛概率。通过标准测试函数对其优化性能进行研究,该算法在函数优化的全局寻优能力和快速搜索能力上,均优于二进制量子蚁群算法和连续量子蚁群算法。 Based on the theory of quantum evolution and ant colony optimization strategy, combined with a binary quantum ant colony algorithm, this paper proposes a novel quantum ant colony algorithm based on adaptive phase rotation(BQACO). The al- gorithm uses the probability amplitude of quantum bits to represent the ant colony pheromone, uses a pseudo-random selection policy to achieve the moving of the position, based on the adaptive phase rotation strategy and the mutating operation, the phero- mone is dynamically updated and the probability of premature convergence is reduced. To test the new algorithm' s optimization performance, a research based on benchmark functions is conducted. The result indicates that the BQACO has a stronger ability of global optimization and higher convergence speed than binary coded quantum ant colony algorithm and continuous quantum ant colony algorithm.
作者 洪超 李飞
出处 《计算机工程与应用》 CSCD 2013年第16期35-39,共5页 Computer Engineering and Applications
关键词 量子进化计算 量子蚁群算法 量子旋转门 自适应相位 二进制编码 quantum evolution algorithm quantum ant colony algorithm quantum rotation gate adaptive phase binary coded
  • 相关文献

参考文献12

  • 1Dorigo M, Maniezzo V, Colomi A.Antsystem: optimization by a colony ofcooperating agents[J].IEEE Transactions on Systems, Man and Cybernetics, 1996,26( 1 ) : 29-41.
  • 2Guntsch M, Middendorf M.Applying population based aco to dynamic optimization problems[C]//Lecture Notes in Com- puter Science, 2002,2463 : 111-122.
  • 3Dorigo M, Gambardella L M.Ant colony system: a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation, 1997,1 ( 1 ) : 53-66.
  • 4Maniezzo V.Exact and approximate nonditerministic tree search procedures for the quadratic assignment problem[J].Informs Journal of Computer, 1999,2( 11 ) : 358-369.
  • 5Colorni A, Dorigo M, Maniezzo V.Ant colony system for job-shop scheduling[J].Belgian Journal of Operations Research Statis- tics and Computer Science, 1994,34( 1 ) : 39-53.
  • 6Han K H, Kim J H.Quantum-inspired evolutionary algorithm for a class ofcombinatorialoptimization[J].IEEE Transactions on Evolutionary Computation,2002,2(6) :580-593.
  • 7Han K H, Kim J H.Quantum-inspired evolutionary algorithms with a new termination criterion gate, and two-phase scheme[J]. 1EEE Transactions on Evolutionary Computation, 2004,8 (2): 156-169.
  • 8杨佳,许强,张金荣,曹长修.一种新的量子蚁群优化算法[J].中山大学学报(自然科学版),2009,48(3):22-27. 被引量:18
  • 9李跃光,赵俊生,张远平.求解TSP的改进量子蚁群算法[J].计算机工程与设计,2009,30(16):3843-3845. 被引量:9
  • 10Wang L, Niu Q, Fei M R.A novel Quantum Ant Colony Optimization Algorithm[C]//Lecture Notes in Computer Sci- ence, 2007,4688 : 277-286.

二级参考文献45

  • 1段海滨,马冠军,王道波,于秀芬.一种求解连续空间优化问题的改进蚁群算法[J].系统仿真学报,2007,19(5):974-977. 被引量:74
  • 2马龙博,张宏建,周洪亮,贺庆.基于Hilbert-Huang变换和支持向量机的油水两相流流型识别[J].化工学报,2007,58(3):617-622. 被引量:11
  • 3王宇平,李英华.求解TSP的量子遗传算法[J].计算机学报,2007,30(5):748-755. 被引量:71
  • 4严晨,王直杰.以TSP为代表的组合优化问题研究现状与展望[J].计算机仿真,2007,24(6):171-174. 被引量:17
  • 5Samanta B. Gear fault detection using artificial neural networks and support vector machines with genetic algorithms. Mechanical Systems and Signal Processing, 2004, 18 (3): 625 -644
  • 6Chiang L H, Kotanchek M E, Kordon A K. Fault diagnosis based on Fisher discriminant analysis and support vector machine. Computer and Chemical Engineering, 2004, 28 (8): 1389-1401
  • 7Wang S W, Xiao F. Detection and diagnosis of AHU sensor faults using principal component analysis method. Energy Conversion and Management, 2004, 45 (17):2667-2686
  • 8Lee J M, Yoo C K, Lee I B. Fault detection of batch processes using multiway kernel principal component analysis. Computers and Chemical Engineering, 2004, 28 (9): 1837- 1847
  • 9Chiang L H, Pell R J. Genetic algorithms combined with diseriminant analysis for key variable identification. Journal of Process Control, 2004, 14 (2): 143 -155
  • 10Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies//Proceedings of ECAL91 European Conf. on Artificial Life. Paris: Elsevier, 1991: 134-142

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部