期刊文献+

Continuous-time chaotic systems: Arbitrary full-state hybrid projective synchronization via a scalar signal 被引量:2

Continuous-time chaotic systems: Arbitrary full-state hybrid projective synchronization via a scalar signal
原文传递
导出
摘要 Relerrlng to contlnuous-Ume claaotlc systems, tills paper presents a new projective syncnromzatlon scheme, wnlcn enables each drive system state to be synchronized with a linear combination of response system states for any arbitrary scaling matrix. The proposed method, based on a structural condition related to the uncontrollable eigenvalues of the error system, can be applied to a wide class of continuous-time chaotic (hyperchaotic) systems and represents a general framework that includes any type of synchronization defined to date. An example involving a hyperchaotic oscillator is reported, with the aim of showing how a response system attractor is arbitrarily shaped using a scalar synchronizing signal only. Finally, it is shown that the recently introduced dislocated synchronization can be readily achieved using the conceived scheme. Relerrlng to contlnuous-Ume claaotlc systems, tills paper presents a new projective syncnromzatlon scheme, wnlcn enables each drive system state to be synchronized with a linear combination of response system states for any arbitrary scaling matrix. The proposed method, based on a structural condition related to the uncontrollable eigenvalues of the error system, can be applied to a wide class of continuous-time chaotic (hyperchaotic) systems and represents a general framework that includes any type of synchronization defined to date. An example involving a hyperchaotic oscillator is reported, with the aim of showing how a response system attractor is arbitrarily shaped using a scalar synchronizing signal only. Finally, it is shown that the recently introduced dislocated synchronization can be readily achieved using the conceived scheme.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期333-338,共6页 中国物理B(英文版)
关键词 continuous-time chaotic systems chaos synchronization observer-based synchronization scalarsynchronizing signal continuous-time chaotic systems, chaos synchronization, observer-based synchronization, scalarsynchronizing signal
  • 相关文献

参考文献23

  • 1Li Y and Liu Z R 2010 Chin. Phys. B 19 110501.
  • 2Carroll T L and Pecora L M 1991 IEEE Trans. Circ. Sys. 38 453.
  • 3Grassi G and Mascolo S 1999 IEEE Trans. Circ. Sys. I46 1135.
  • 4Grassi G and Mascolo S 1999 Int. J. Circ. Theory Appl. 27 543.
  • 5Grassi G and Mascolo S 1997 IEEE Trans. Circ. Sys. I44 1011.
  • 6Grassi G and S. Mascolo 1999 IEEE Trans. Circ. Sys. II46 478.
  • 7Grassi G and Mascolo S 1998 IEE Electron. Lett. 34 424.
  • 8Miller D A and Grassi G 2001 IEEE Trans. Circ. Sys. I48 366.
  • 9Brucoli, M, Carnimeo L and Grassi G 1996 Int. J. Bifur. Chaos 6 1673.
  • 10Brucoli, M, Carnimeo L and Grassi G 1996 Int. J. Circ. Theory Appl. 24 489.

同被引文献28

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部