摘要
Mixing and heat transfer processes of the granular materials within rotary cylinders play a key role in industrial processes. The numerical simulation is carried out by using the discrete element method (DEM) to investigate the influences of material properties on the bed mixing and heat transfer process, including heat conductivity, heat capacity, and shear modulus. Moreover, a new Prclet number is derived to determine the dominant mechanism of the heating rate within the particle bed, which is directly related to thermal and mechanical properties. The system exhibits a faster heating rate with the increase of ratio of thermal conductivity and heat capacity, or the decrease of shear modulus when inter-particle conduction dominates the heating rate; conversely, it shows a fast-mixing bed when particle convection governs the heating rate. The simulation results show good agreement with the theoretical predictions.
Mixing and heat transfer processes of the granular materials within rotary cylinders play a key role in industrial processes. The numerical simulation is carried out by using the discrete element method (DEM) to investigate the influences of material properties on the bed mixing and heat transfer process, including heat conductivity, heat capacity, and shear modulus. Moreover, a new Prclet number is derived to determine the dominant mechanism of the heating rate within the particle bed, which is directly related to thermal and mechanical properties. The system exhibits a faster heating rate with the increase of ratio of thermal conductivity and heat capacity, or the decrease of shear modulus when inter-particle conduction dominates the heating rate; conversely, it shows a fast-mixing bed when particle convection governs the heating rate. The simulation results show good agreement with the theoretical predictions.
基金
supported by the National High Technology Research and Development Program of China(Grant No.2007AA05Z215)
the Fundamental Research Funds for the Central Universities(Grant No.FRF-AS-10-005B)