期刊文献+

交叉验证KNN支持向量预选取算法在说话人识别上的应用 被引量:1

A Cross-validation KNN Based Support Vector Pre-extracted Algorithm and Its Application on Speaker Recognition
下载PDF
导出
摘要 针对传统支持向量机算法时空复杂度较高的不足,提出了一种基于交叉验证KNN的支持向量预选取算法。该算法首先对原始样本求k个的邻近样本,然后计算邻近样本中异类样本的比例p1,最后选取满足p1大于阈值p的原始样本作为支持向量。通过交叉验证方法确定k与p的最合适的数值。在UCI标准数据集和说话人识别数据集上的仿真实验显示算法可有效地降低支持向量机分类器的运行时间,同时又具有较好的分类性能。 As traditional support vector machine algorithm is with a high time and space complexities, in this paper, we propose a cross-validation KNN based support vector pre-extracted algorithm. The algorithm firstly computes k neighboring samples for each original sample. Then it computes the proportion of heterogeneous samples in the neighboring samples. Finally, it selects the samples which meet p1 greater than p as support vectors. In this paper, the proposed algorithm use cross-validation method to determine the most appropriate values of k and p. Simulation experiments on the UCI standard data sets and speaker recognition dataset show that the proposed algorithm can effectively reduce the running time of support vector machine classifiers, while being with a good classification performance.
出处 《科学技术与工程》 北大核心 2013年第20期5839-5842,5847,共5页 Science Technology and Engineering
基金 国家自然科学基金项目(61101160) 广东省自然科学基金项目(9151009001000043) 东莞市高校科研机构科技计划项目(2011108102016)资助
关键词 支持向量机 交叉验证 KNN算法 说话人识别 support vector machine cross-validation KNN algorithm speaker recognition
  • 相关文献

参考文献12

  • 1Cortes C, Vapnik V. Support vector networks. Machine Learning, 1995; 20:273-297.
  • 2Valiant L.G. A theory of the learnable. Communications of the ACM, 1984; 27(11): 1134-1142.
  • 3黄小龙.改进的支持向量机无线网络安全检测算法模型[J].科技通报,2012,28(2):49-51. 被引量:4
  • 4Boser B E, Guyon I M, Vapnik V N, A training algorithm for optimal margin classifiers. In : Haussler D ( Ed. ), Proceedings Fifth Annual Workshop on Computational Learning Theory, 1992 : 144-152.
  • 5Osuna E, Freund R, Girosi F, An improved training algorithm for support vector machines. In : IEEE Workshop on Neural Networks for Signal Processing, 1997 : 276-285.
  • 6Platt J C. Fast training of support vector machines using sequential minimal optimization. In : Seholkopf B, Burges C, Smola A ( Eds. ), Advances in Kernel Methods - Support Vector Learning, MIT Press, 1999 : 185-208.
  • 7李青,焦李成,周伟达.基于向量投影的支撑向量预选取[J].计算机学报,2005,28(2):145-152. 被引量:37
  • 8焦李成,张莉,周伟达.支撑矢量预选取的中心距离比值法[J].电子学报,2001,29(3):383-386. 被引量:48
  • 9Kohavi R. A study of cross-validation and bootstrap for accuracy esti- mation and model selection. In : Wermter S, Riloff E, Scheler G, eds. Proc 14th Joint Int. Conf. Artificial Intelligence. San Mateo, CA: Morgan Kaufmann, 1995:1137-1145.
  • 10Reynolds D A, Rose R C. Robust text-independent speaker identifi- cation using Gaussian mixture speaker models. IEEE Transactions on Speech Audio Processing, 1995; 3(1) : 72-83.

二级参考文献14

共引文献74

同被引文献19

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部