期刊文献+

基于神经网络法的自锚式悬索桥可靠度研究 被引量:2

Analysis on the Reliability of Self-anchored Suspension Bridge Based on Neural Network Method
下载PDF
导出
摘要 自锚式悬索桥造型美观,且不需要庞大的锚碇。其将主缆锚固于加劲梁上,受力发生了极大的变化。因此,研究自锚式悬索桥的可靠性十分必要。采用BP神经网络法拟合可靠度计算的极限状态函数,引入粒子群算法优化神经网络法的初始权值,实现函数拟合的双优化,新算法则利用MATLAB编程实现。极限状态函数显化后,结合蒙特卡洛法计算自锚式悬索桥在正常使用极限状态下的可靠度。 The self-anchored suspension bridge has the advantages of beautiful appearance, and does not need huge anchor. The main cable is anchored in the stiffening girder, its stress changed. Therefore, study on the reliability of self-anchored suspension bridge is very necessary. Using BP neural network method to fit the reliability calculation of the limit state function, bringing in the initial weight of particle swarm optimization neural network method, realize the dual optimization function fitting, a new algorithm using MATLAB programming. To manifest the limit state function, calculate the self-anchored suspension bridge in reliability under serviceability limit states with Monte Carlo method.
作者 谢斌 余报楚
出处 《城市建筑》 2013年第10期264-264,275,共2页 Urbanism and Architecture
关键词 自锚式悬索桥 可靠度 BP-PSO神经网络算法 蒙特卡洛法 self-anchored suspension bridge reliability BP-PSO neural network algorithm Monte Carlo method
  • 相关文献

参考文献3

二级参考文献41

共引文献26

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部