期刊文献+

Normal family and the sequence of omitted functions 被引量:4

Normal family and the sequence of omitted functions
原文传递
导出
摘要 Let {fn} be a sequence of meromorphic functions on a plane domain D, whose zeros and poles have multiplicity at least 3. Let {hn} be a sequence of meromorphic functions on D, whose poles are multiple, such that {hn} converges locally uniformly in the spherical metric to a function h which is meromorphic and zero-free on D.If fn≠hn, then {fn} is normal on D. Let {fn} be a sequence of meromorphic functions on a plane domain D, whose zeros and poles have multiplicity at least 3. Let {hn} be a sequence of meromorphic functions on D, whose poles are multiple, such that {hn} converges locally uniformly in the spherical metric to a function h which is meromorphic and zero-free on D.If fn≠hn, then {fn} is normal on D.
出处 《Science China Mathematics》 SCIE 2013年第9期1821-1830,共10页 中国科学:数学(英文版)
基金 National Natural Science Foundation of China (Grant No. 11071074)
关键词 meromorphic function normal family the sequence of omitted functions 函数序列 省略 家庭 亚纯函数 函数域 平面 点数 收敛
  • 相关文献

参考文献8

  • 1Bergweiler W, Pang X C. On the derivative of meromorphic functions with multiple zeros. J Math Anal Appl, 2003 278:285-292.
  • 2Chang J M, Zalcman L. Meromorphic function that share a set with their derivatives. J Math Anal Appl, 2008, 338 1020-1028.
  • 3Conway J B. Ynctions of One Complex Variable. New York: Springer-Verlag, 1973.
  • 4Gu Y X. A criterion for normality of families of meromorphic functions (in Chinese). Sci Sinica, 1979, 1:267-274.
  • 5Hayman W K. Meromorphic Functions. Oxford: Clarendon Press, 1964.
  • 6Pang X C, Yang D G, Zalcman L. Normal families and omitted functions. Indiana Univ Math J, 2005, 54:223-235.
  • 7Schwick W. On Hayman's alternative for families of meromorphic functions. Complex Variables Theory Appl, 1997 32:51-57.
  • 8Yang P, Pang X C. Derivatives of meromorphic functions with multiple zeros and elliptic functions. Preprint.

同被引文献18

  • 1CHANG JianMing Department of Mathematics, Changshu Institute of Technology, Changshu 215500, China.Normality concerning shared values[J].Science China Mathematics,2009,52(8):1717-1722. 被引量:5
  • 2Aulaskari R, Chen H. Area inequality and Qp norm. J Funct Anal, 2005, 221: 1-24.
  • 3Aulaskari R, He Y, Ristioja J, et al. Qp spaces on Riemann surfaces. Canad J Math, 1998, 50: 449-464.
  • 4Aulaskari R, Lappan P, Xiao J, et al. BMOA(R,m) and capacity density Bloch spaces on hyperbolic Riemann surfaces.Results Math, 1996, 29: 203-226.
  • 5Aulaskari R, R?tty? J. Inclusion relations for new function spaces on Riemann surfaces. Canad Math Bull, 2013, 56:466-476.
  • 6Kobayashi S. Range sets and BMO norms of analytic functions. Canad J Math, 1984, 36: 747-755.
  • 7Metzger T A. On BMOA for Riemann surfaces. Canad J Math, 1981, 33: 1255-1260.
  • 8Metzger T A. Bounded mean oscillation and Riemann surfaces. In: Bounded Mean Oscillation in Complex Analysis.Joensuu: University of Joensuu Publ, 1989, 79-99.
  • 9Xiao J. Isoperimetry for semilinear torsion problem in Riemannian two-manifolds. Adv Math, 2012, 229: 2379-2404.
  • 10Zhao Z. An exponential decay characterization of BMOA on Riemann surfaces. Arch Math (Basel), 2002, 79: 61-66.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部