摘要
根据CG-DESCENT算法[1]的结构和Powell在综述文献[11]中的建议,给出了两种新的求解无约束优化问题的非线性共轭梯度算法.它们在任意线搜索下都具有充分下降性质,并在标准Wolfe线搜索下对一般函数能够保证全局收敛性.通过对CUTEr函数库中部分著名的函数进行试验,并借助著名的Dolan & More[2]评价方法,展示了新算法的有效性.
By the structure of CG-DESCENT method and Powell's suggestion in , two effi- cient nonlinear conjugate gradient methods are given. The given methods can be guaranteed the sufficient descent property without out any line search, and be proved the global conver- gence property for the general functions under the standard Wolfe line search. In particular, by the famous evaluation method of Dolan 8z More, the numerical results also show that the proposed methods are more efficient by comparing with the famous CG-DESCENT method using a classical set of problems from CUTEr library.
出处
《计算数学》
CSCD
北大核心
2013年第3期286-296,共11页
Mathematica Numerica Sinica
基金
重庆市教委项目(KJ121112)
关键词
非线性共轭梯度法
标准Wolfe线搜索
充分下降性质
全局收敛性
nonlinear conjugate gradient method
standard Wolfe line search
sufficientdescent property
global convergence property