期刊文献+

基于启发式退火拓扑择优机制的稀疏联想记忆实现

Sparsely Connected Associative Memory Based on the Preferential Mechanism of Heuristic Annealed Topology
下载PDF
导出
摘要 借鉴统计物理学中的"退火"概念,针对已有稀疏互联联想记忆模型中只考虑网络连接随机稀疏方式,缺乏面向特定模式存储任务的确定性操作,使用非平衡态统计分析方法,讨论了有限代谢能量资源约束下的网络结构最优稀疏原则,给出了相应的理论推导.在此基础上,研究了面向特定学习任务的网络稀疏结构自适应方法,构建了基于启发式退火拓扑择优机制的稀疏联想记忆模型.实验表明,该模型既具有一定的生物学基础,维持了网络结构广泛稀疏互联的特性,又能在网络资源受限条件下达到最优联想记忆性能,符合神经生物系统本身自组织、自学习的特点. A novel sparsely connected associative memory based on the preferential mechanism of heuristic annealed topology was proposed in this paper.Aimed at overcoming the disadvantage of quenched dilution as random synapses disconnection of the existing methods,this model,taking the ideology of annealed dilution of statistical physics into account,investigates the optimal synaptic dilution strategy under the constraints of limited metabolic energy,namely limited amount of neurons and connections.Based on explicit theoretical analysis,this model constructs a learning task-dependent network topology in a heuristic annealed way which is much closer to biological genuine system as possessing flexible adaptive topology.It can achieve better performance than the existing counterparts of the same class.The effectiveness and robustness of the proposed model is validated by a great number of experiments.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2013年第7期1009-1014,1021,共7页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(91120307)
关键词 联想记忆 稀疏互联 结构自适应 退火拓扑择优 associative memory sparsely connected adaptive topology annealed topology preferential
  • 相关文献

参考文献14

  • 1Hopfield J J. Neural networks and physical system with emergent collection computation abilities[J]. Proceedings of the National Academy of Sciences, 1982, 79(8): 2554-2558.
  • 2严晨,夏旻,王直杰.基于非线性内电位构造函数的抗伪状态联想记忆[J].系统仿真学报,2009,21(4):1040-1042. 被引量:2
  • 3Kumar S, Singh M P. Pattern recall analysis of the Hopfield neural network with a genetic algorithm[J]. Computers and Mathematics with Applications, 2010, 60(4) : 1049-1057.
  • 4Kumar S, Goel R, Singh M P. Implementation of hopfield associative memory with evolutionary algo- rithm and MC-adaptation rule for pattern storage [C]//Proceedings of the International Conference on Soft Computing for Problem Solving. India: Springer, 2012: 213-227.
  • 5Bullmore E D, Sporns O. The economy of brain net- work organization[J] Nature Reviews Neuroscience, 2012, 13(5): 336-349.
  • 6Barr6 J, Ciani A, Fanelli D, et al. Finite size effects for the Ising model on random graphs with varying di- lution[J]. Physica A: Statistical Mechanics and its Applications, 2009, 388(17): 3413-3425.
  • 7L6we M, Vermet F. The Hopfield Model on a Sparse ErdOs-Renyi Graph[J]. Journal of Statistical Physics, 2011, 143(1): 205-214.
  • 8Barra A, Agliari E. Equilibrium statistical mechanics on correlated random graphs[J]. Journal of Statistical Mechanics : Theory and Experiment, 2011, 2011 (02 ) : 02027. 1-02027.29.
  • 9Rolls E T, Webb T J. Cortical attractor network dy- namics with diluted connectivity[J]. Brain Research, 2012, 1434: 212-225.
  • 10Rolls E T. Advantages of dilution in the connectivity of attractor networks in the brain[J]. Biologicall.y Inspired Cognitive Architectures, 2012 ( 1 ) : 44-54.

二级参考文献9

  • 1徐红,杨子光,井海明,冉祥东.Hopfield网络联想记忆外积法设计权的研究[J].计算机与网络,2006,32(3):83-83. 被引量:2
  • 2王瑞敏,赵鸿.神经元传输函数对人工神经网络动力学特性的影响[J].物理学报,2007,56(2):730-739. 被引量:2
  • 3D J Amit, H Gutfreund, H Sompolinsky. Spin-glass models of neural networks [J]. Phys Rev A (S1050-2947), 1985, A32(2): 1007-1018.
  • 4J A Anderson. A simple neural network generating interactive memory [J]. Mathematical Biosciences (S0025-5564), 1972, 14: 197-220.
  • 5J J. Hopfield, neural networks and physical systems with emergent collective computation abilities [J]. Proc. Nat. Acad. Sci., USA: (S0027-8424), 1982, 79(8): 2445-2558.
  • 6N Matsumoto, D Ide, M Watanabe, M Okada, Synaptic depression enlarges basin of attraction [J]. Neurocomputing (S0925-2312), 2005, 65-66: 571-577.
  • 7O Masato. Notions of associative memory and sparse coding [J]. Neural Networks (S0893-6080), 1996, 9(8): 1429-1458.
  • 8S Amari. Characteristics of sparsely encoded associative memory, [J]. Neural networks (S0893-6080), 1989, 2(6): 451-457.
  • 9T Kohonem. Correlation matrix memories [J]. IEEE Trans. Comput (S0018-9340), 1972, C-21: 353-359.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部