期刊文献+

使用多弦长曲率多项式的角点检测算法 被引量:2

Corner detection algorithm using multi-chord curvature polynomial
下载PDF
导出
摘要 在弦到点的距离累加(CPDA)技术和曲率积的基础上,提出了多弦长曲率多项式的角点检测算法。首先利用Canny边缘检测器抽取边缘,然后对于不同弦长下边缘轮廓曲率局部极大值点,计算曲率的和;对于非极值点,计算曲率的积。该方法不仅可以显著增强曲率极值点的峰值,而且避免了曲率积对一些角点平滑。最后,为了降低人为设定门限带来的错检或漏检,利用局部自适应阈值去判别角点。实验结果表明,与其他的角点检测算法相比,该方法具有很强的鲁棒性,它的平均检测准确率提高了14.5%,而且在角点数重复率准则上平均性能提高了12.6%。 Multi-chord curvature polynomial algorithm for corner detection was proposed based on Chord-to-Point Distance Accumulation(CPDA) technique and curvature product.Firstly,the edge map was extracted by Canny edge detector.Then,at each chord,a multi-chord curvature polynomial was used as the sum or multiplication of the contour curvature.The new method can not only effectively enhance curvature extreme peaks,but also prevent smoothing some corners.To reduce false or missing detection made by experiment threshold,local adaptive threshold was used to detect corners.According to the detection capability,localization accuracy and repeatability of corner number criteria,experiments were made to compare the proposed detector with several recent corner detectors.The experimental results demonstrate that the proposed detector has strong robustness,its detection accuracy increases by 14.5%,and its average repeatability increases by 12.6%.
出处 《计算机应用》 CSCD 北大核心 2013年第8期2313-2316,2354,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(60872139)
关键词 弦到点距离累加 角点检测 边缘检测 自适应阈值 鲁棒性 Chord-to-Point Distance Accumulation(CPDA) corner detection edge detection adaptive threshold robustness
  • 相关文献

参考文献15

  • 1AWRANGJEB M, LUG J. An improved curvature scale-space cor- ner detector and a robust comer matching approach for transformed image identification [ J]. IEEE Transactions on hnage Processing, 2008, 17(12) :2425 -2441.
  • 2WITKIN A P. Scale-space filter [C]// IJCA1 '83: Proceedings of the Eighth International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 1983, 2:1019 - 1022.
  • 3MOKHTARIAN F, SUOMELA R. Robust image comer detection through curvature scale space [ J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 1998, 20(12) : 1376 - 1378.
  • 4HE X C, YUNG N H C. Comer detector hased on global local cur- vature properties [ J]. Optical Engineering, 2008, 47(5) : 1 - 12.
  • 5HAN H J, POSTON T T. Chord-to-point distance accumulation and planar curvature: a new approach to discrete curvature[ J]. Pattem Recognition Letters, 2001, 22(10) : 1133 - 1144.
  • 6AWRANGJEB M, LUG. Robust image comer detection based on the chord-to-point distance accumulation technique [ J]. IEEE Transactions on Multimedia, 2008, 10(6) : 1059 - 1072.
  • 7章为川,水鹏朗,朱磊.利用各向异性高斯方向导数相关矩阵的角点检测方法[J].西安交通大学学报,2012,46(11):91-97. 被引量:9
  • 8顾国庆,白瑞林,杜斌.基于曲率多尺度的高精度角点检测[J].光学技术,2010,36(6):918-922. 被引量:9
  • 9刘亚威,李见为,张小洪.一种基于边缘轮廓线的LoG角点检测[J].计算机工程与应用,2010,46(10):140-143. 被引量:7
  • 10孙君顶,郭启强,张兆生.基于曲率尺度空间的轮廓角点检测[J].光电工程,2009,36(7):78-82. 被引量:15

二级参考文献46

  • 1洪明坚,张小洪,杨丹.基于B-样条轮廓方向变化率多尺度表示的角点检测[J].计算机应用,2009,29(3):725-728. 被引量:4
  • 2赵文彬,张艳宁.角点检测技术综述[J].计算机应用研究,2006,23(10):17-19. 被引量:84
  • 3张小洪,雷明,杨丹.基于多尺度曲率乘积的鲁棒图像角点检测[J].中国图象图形学报,2007,12(7):1270-1275. 被引量:21
  • 4张小洪,李博,杨丹.一种新的Harris多尺度角点检测[J].电子与信息学报,2007,29(7):1735-1738. 被引量:79
  • 5Moravec H P.Towards autornatic visual obstacle avoidance[C]//IEEE International Conference on Robotics and Automation C,1977: 584-596.
  • 6Harris C,Steven M.A combined corner and edge detector[C]//Proc 4th of Alvey Vision Conf, Manchester, 1988 : 189-102.
  • 7Smith S M,Brady J M.SUSAN-A new approach to low level image processing[J].International Journal of Computer Vision,1997,23 ( 1 ) : 45-78.
  • 8Mokhtarian F,Suomela R.Robust image corner detection through curvature scale space[J].IEEE Transactions on Pattern Analysis and Machine Inelligence, 1998,20( 12 ) : 1376-1381.
  • 9Rattarangsi A,Chln R T.Scale-based detection of corners of planar curves[J].IEEE Transaction on Pattern Analyis and Machine Intelligence, 1992,14(4) :450-449.
  • 10He X C,Yung N H C.Curvature scale space corner detector with adaptive threshold and dynamic region of support[C]//IEEE Proceedings of the 17th International Conference on Pattern Recognition ( ICPR ' 04 ), Washington, DC, 2004,2 : 791-794.

共引文献46

同被引文献6

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部