摘要
基于Reissner-Mindlin板弯曲理论,将Kriging插值无网格法应用于中厚板弯曲问题,推导相应的离散方程.该方法可以只依赖于一组离散的节点建立试函数,有效地避免了复杂的网格划分和网格畸变的影响.相对于无网格法中常用的移动最小二乘近似而言,滑动Kriging插值法的形函数满足Kronecker delta函数性质,可以直接施加本质边界条件.算例分析表明,用Kriging插值无网格法分析中厚板弯曲问题,具有效率高,精度高和易于实现等优点.
Based on Reissner-Mindlin plate theory, a meshless Kriging interpolation method (MKIM) is developed for bending of moderately thick plate. Corresponding discrete equations are derived. Approximation function in the method is built on a group of scattered nodes and therefore it can eliminate effectively complex meshing and disadvantage of mesh distortion. Compared with moving least squares (MLS) approximation widely used in meshless methods, shape functions constructed by moving Kriging interpolation method possess Kronecker delta property, which facilitates imposition of essential boundary conditions. High efficiency, good accuracy and easy implementation of the method in bending of moderately thick plate problem are demonstrated with numerical examples.
出处
《计算物理》
CSCD
北大核心
2013年第4期547-553,共7页
Chinese Journal of Computational Physics
基金
国家自然科学基金(11002054)资助项目
关键词
中厚板
滑动Kriging插值
无网格法
弯曲问题
moderately thick plate
moving Kriging interpolation
meshless method
bending problem