期刊文献+

视觉传感器网络中基于RANSAC的顽健定位算法 被引量:4

RANSAC based robust localization algorithm for visual sensor network
下载PDF
导出
摘要 视觉传感器网络由于节点故障或环境变化将导致节点对目标的观测数据出现错误,而基于最小二乘的多视觉信息融合定位方法将因此造成较大的定位误差。针对此问题提出一种基于集中式RANSAC的顽健定位算法,将错误数据进行筛选剔除,从而提高定位精度,进一步针对集中式RANSAC将会导致单个节点的计算复杂度过高而导致网络节点能耗不平衡问题,提出基于分布式RANSAC的顽健定位算法,从而将大量的迭代计算平均分布在各个节点中并行处理,在保证定位过程顽健性的同时保证了网络的计算能耗平衡性。最后通过实验对no-RANSAC、cen-RANSAC和dis-RANSAC算法的定位性能进行了比较,验证了该算法能够依照预定的概率获得良好的定位结果,并对算法的时间复杂度进行了分析。 Due to node failures or environmental changes, observed data on the target will be error in visual sensor net work, so the least squares based multi-vision localization algorithm won't be accurate. A centralized RANSAC based ro-bust localization method was proposed, which can remove the error data and improve the positioning accuracy. Further-more, to address this issue, energy imbalance of network nodes in centralized RANSAC where all computing load is executed in one single node, a robust localization algorithm based on distributed RANSAC was also proposed, which can distribute a large number of iterative calculations into each node averagely to ensure the network balance on calculation and energy without affecting the robustness. Finally, through comparing experiments on no-RANSAC, cen-RANSAC and dis-RANSAC, it's verified that this algorithm can obtain robust and good positioning results in a predetermined probabil- ity, and the time complexity was analyzed via experiment.
出处 《通信学报》 EI CSCD 北大核心 2013年第8期62-69,共8页 Journal on Communications
基金 国家高技术研究发展计划("863"计划)基金资助项目(2013AA12A201) "新一代宽带无线移动通信网"国家科技重大专项基金资助项目(2011ZX03005-005) 电子信息产业发展基金资助项目(2012-380) 天津市滨海新区科技小巨人成长计划基金资助项目(2011-XJR12009)~~
关键词 视觉传感器网络 目标定位 顽健定位 RANSAC visual sensor network target localization robust localization RANSAC
  • 相关文献

参考文献18

  • 1AKYILDIZ I F, SU W, SANKARASUBRAMANIAM Y, et al. Sensor networks:a survey[J]. Computer Networks, 2002, 38(4): 393-422.
  • 2马华东,陶丹.多媒体传感器网络及其研究进展[J].软件学报,2006,17(9):2013-2028. 被引量:186
  • 3LEE H, AGHAJAN H. Collaborative self-localization techniques for wireless image sensor networks[A]. Asilomar Conference on Signals, Systems and Computers[C]. Asilomar, CA, 2005. 1566-1570.
  • 4IWAKI H, SRIVASTAVA G, KOSAKA A, et al. A novel evidence accumulation framework for robust multi-camera person detection[A]. Second ACM/IEEE International Conference on Distributed Smart Cameras[C]. 2008. 1-10.
  • 5WANG X, WANG S, BID W, et al. Distributed peer-to-peer target tracking m wireless sensor networks[J]. Sensors, 2007, 7(6): 1001-1027.
  • 6王雪,王晟,马俊杰.分布式无线传感网络的协作目标跟踪策略[J].电子学报,2007,35(5):942-945. 被引量:4
  • 7LIU L, MA H D, ZHANG X. Collaborative target localization in camera sensor networks[A]. IEEE International Conference on Wire-less Communications and Networking[C]. 2008. 2403-2407.
  • 8张波,罗海勇,胡广大,刘冀伟,赵方.多媒体传感器网络中被动目标定位算法[J].东南大学学报(自然科学版),2011,41(2):266-269. 被引量:3
  • 9罗海勇,李锦涛,赵方,林权,朱珍民,周全.基于时空滤波的无线传感器网络抗差节点定位算法[J].高技术通讯,2008,18(12):1244-1252. 被引量:3
  • 10LAZOS L, POOVENDRAN R, CAPKUN S. ROPE: robust position estimation in wireless sensor networks[A]. Proceedings of the 4th International Symposium on Information Processing in Sensor Networks( IPSN)[C]. 2005.324-331.

二级参考文献42

共引文献192

同被引文献33

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部