摘要
The purpose of this paper is to investigate a novel power cycle using low-temperature heat sources such as oceanic-thermal, biomass as well as industrial waste heat. Both a reheater and a liquid-gas ejector are used in this ammonia-water based cycle. Energy analysis and parametric analysis are performed to guide the theoretical performance and experimental investigation is done to verify the theoretical results. The results show that the generator pressure, heating source temperature and turbine outlet depressurization made by the ejector can affect the cycle performances. Besides, the experimental thermal efficiency is much lower than the theoretical one on account of the heat losses and irreversibility. Moreover, the performance of liquid-gas ejector is affected by primary flow pressure and temperature.
基金
supported by the National Natural Science Foundation of China (Grant No. 51076146)