期刊文献+

基于鲁棒M估计的间歇过程离群点检测 被引量:6

Outlier detection for batch processes based on robust M-estimation
下载PDF
导出
摘要 以多元统计分析技术为核心的间歇过程建模、在线监测逐渐成为过程工业的关注焦点,然而过程数据中存在的大量离群点将直接影响上述方法的可靠性,为此提出了一种基于鲁棒M估计的间歇过程离群点检测方法。该方法首先通过积分方程离散化将模型参数估计问题转化为最小二乘优化问题;分别利用Tikhonov正则化方法及鲁棒M估计消除噪声和离群点对模型参数估计的影响;最后通过分析各个样本点的权值,实现过程数据的离群点检测。将所提出的方法应用于半间歇反应过程,实验结果验证了方法的可行性与有效性。 The batch process modeling and online monitoring with multivariate statistical analysis technique as the core have gradually become the focus of process industry;however, a large number of outliers existing in the process data will directly affect the reliability of these methods, and an outlier detection method for batch processes based on robust M-estimation is proposed to solve this problem. First, integral equation discretization is used to convert the model parameter estimation problem to a least squares optimization problem;Tikhonov regularization method and ro- bust M-estimation are utilized to eliminate the effects of noise and outliers on the model parameter estimation, respectively;finally, the outlier detection for process data is achieved through analyzing the weights of the sample points. The proposed outlier detection method was applied to a semi-batch reaction process;and the experiment results verify the feasibility and effectiveness of the method.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第8期1726-1731,共6页 Chinese Journal of Scientific Instrument
基金 国家高技术研究发展计划(2011AA060204) 国家自然科学基金(61203103) 中央高校基本科研业务费(N110304006)资助项目
关键词 间歇过程 离群点 鲁棒 M估计 TIKHONOV正则化 batch process outlier robust M-estimation Tikhonov regularization
  • 相关文献

参考文献5

二级参考文献69

  • 1陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:61
  • 2颜学峰.基于径基函数-加权偏最小二乘回归的干点软测量[J].自动化学报,2007,33(2):193-196. 被引量:10
  • 3Komulainen T,Pekkala P,Rantala A,Jamsa-Jounela S L.Dynamic modelling of an industrial copper solvent extraction process.Hydrometallurgy,2006,81(1):52-61
  • 4Walczak B.Massart D L.The radial basis function-partial least squares approach as a flexible non-linear regression technique.Analytical Chimica Acta,1996,331(3):177-185
  • 5Wang Y,Rong G,Wang S Q.PLS algorithmfor radial basis function networks.In:Proceedings of the 37th IEEE Conference on Decision and Control.Tampa,USA:IEEE,1998.4748-4753
  • 6Yan X F,Chen D Z,Hu S X.Chaos-genetic algorithms for optimizing the operating conditions based on RBF-PLS model.ComputersandChemicalEngineering,2003,27(10):1393-1404
  • 7Lin B,Recke B,Kundsen J K H,Jcrgensen S B.A systematic approach for soft sensor development.Computers and Chemical Engineering,2007,31(5-6):419-425
  • 8Wbld S,sjostrom M.Eriksson L.PLS-regression:a basic tool of chemometrics.Chemometrics and Intelligent Laboratory Systems,2001,58(2):109-130
  • 9SerneeIs S,Croux C,FiIzmoBer P,Van Espen P J.Partial robust M-regression.Chemomettics and Intelligent Laboratory Systems,2005,79(1-2):55-64
  • 10de Jong S.An alternative approach to partial least squares regression.Chemometrics and Intelligent Laboratory Systerns,1993,18(3):251-263

共引文献96

同被引文献76

  • 1苑进,刘成良,古玉雪,苗中华.基于相关向量机的双变量施肥控制序列优化[J].农业机械学报,2011,42(S1):184-189. 被引量:15
  • 2OZDEMIR S, XIAO Y. FTDA: Outlier detection-based fault- tolerant data aggregation for wireless sensor net- works [ J ]. Security and Communication Networks, 2013, 6(6) : 702-710.
  • 3BRANCH J W, GIANNELLA C, SZYMANSKI B, et al. In-network outlier detection in wireless sensor networks [ J]. Knowledge and information systems, 2013, 34( 1 ) : 23 -54.
  • 4GHORBEL O, JMAL M W, AYEDI W, et al. An over- view of outlier detection technique developed for wireless sensor networks [ C ]. Systems, Signals & Devices (SSD), 2013 10th International Multi-Conference on. IEEE, 2013: 1-6.
  • 5HAUSKRECHT M, BATAL I, VALKO M, et al. Outlier detection for patient monitoring and alerting [ J ]. Journal of Biomedical Informatics, 2013, 46( 1 ) : 47-55.
  • 6VIDMAR G, BLAGUS R. Outlier detection for heahhcare quality monitoring - A comparison of four approaches to over-dispersed Proportions [ J ]. Quality and Reliability Engineering International, 2014, 30 (3) : 347-362.
  • 7BREUNIG M M, KRIEGEL H P, Ng R T, et al. LOF: identifying density-based local outliers [ C ]. ACM Sigmod Record. ACM, 2000, 29(2): 93-104.
  • 8KELARESTAGHI M, HASHEMI S. I-IncLOF: Improved incremental local outlier detection for data streams [ C ]. AISP 2012,2012.
  • 9GOLDSTEIN M. FastLOF: An expectation-maximization based local outlier detection algorithm [ C ]. Pattern Rec- ognition (ICPR), 2012 21st International Conference on. IEEE, 2012: 2282-2285.
  • 10GAO L, YU S Y, LUO Y P, et al. MLOD: Multi-granu- larity local outlier detection [ C ]. Granular Computing, 2009, GRC'09. IEEE International Conference on. IEEE, 2009: 171-175.

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部