期刊文献+

基于输出电压和电源电流协同分析的故障诊断方法 被引量:10

Fault diagnosis method based on output voltage and supply current collaborative analysis
下载PDF
导出
摘要 提出了基于输出电压和电源电流协同分析的模拟电路故障诊断新方法。由于不同故障对输出电压和电源电流谐波频谱的幅度和相位的敏感程度不同,因此使用该方法可以有效地检测到灾难型故障和参数型故障,并且该方法对传统方法无法检测的时延类故障依然有效,在协同分析过程中分别采用欧式距离和马氏距离作为灾难型故障和参数型故障检测的判别依据,并且文中分析了由于输入激励不同、分析谐波次数不同所导致的故障覆盖率问题。与基于输出电压的分析方法相比,基于输出电压和电源电流协同分析的方法具有更高的故障覆盖率。 A new method is proposed for analog circuit fault diagnosis based on the collaborative analysis of output voltage and supply current. Because different faults have different sensitivities to the amplitude and phase of the out- put voltage and supply current harmonic spectrum, catastrophic faults and parametric faults can be effectively detected with this method. And time-delay related faults that can not be detected with traditional methods also can be detected using this collaborative analysis method. The Euclidean distance is adopted as the decision criterion of catastrophic faults and the Mahalanobis distance is adopted as the decision criterion of parametric faults. The fault coverage problems caused by the differences in input excitation or harmonic numbers are also analyzed. The collaborative analysis method based on output voltage and supply current has higher fault coverage compared with the traditional methods based on output voltage.
作者 马岚 王厚军
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第8期1872-1878,共7页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金重点项目(60934002) 高等学校博士学科点专项科研基金(20100185110004)资助项目
关键词 模拟电路 灾难型故障 参数型故障 欧式距离 马氏距离 analog circuit catastrophic fault parametric fault Euclidean distance Mahalanobis distance
  • 相关文献

参考文献15

二级参考文献88

  • 1王承,陈光,谢永乐.多层感知机在模拟/混合电路故障诊断中的应用[J].仪器仪表学报,2005,26(6):578-581. 被引量:12
  • 2王承,陈光,谢永乐.基于小波-神经网络的模拟电路I_(DDT)故障诊断[J].仪器仪表学报,2005,26(11):1106-1108. 被引量:18
  • 3彭良玉,禹旺兵.基于小波分析和克隆选择算法的模拟电路故障诊断[J].电工技术学报,2007,22(6):12-16. 被引量:15
  • 4AMINIAN M, AMINIAN F. Neural-network based analog-circuit fault diagnosis using wavelet transform as processor [ J ]. IEEE Transactions on Circuits and System Ⅱ: Analog and Digital signal processing, 2000, 47 ( 2 ) : 151-156.
  • 5CATELANI M, FORT A. Soft fault diagnosis and isolation in analog circuits: Some results and a comparison between a fuzzy approach and radial basis function networks [J]. IEEE Transaction on Instrumentation & Measurement, 2002,51 (2) : 196-202.
  • 6SONG G M, WANG H J, JIANG S Y, et al. Fault diagnosis approach of analog circuits based on genetic wavelet neural network[ C]. ICEMI 07,China, Xi' an, Aug. 16- 17, 2007:3675-3679.
  • 7LONG B, HUANG J G, TIAN S L. Least squares support vector machine based analog circuit fault diagnosis using wavelet transform as preprocessor [ C ]. ICCCAS 2008, China, 2008,25-27(5 ) : 1026 -1029.
  • 8SIWEK K, OSOWSKI S, MARKIEWICZ T. Support vector machine for fault diagnosis in electrical circuits [C]. Proceedings of the 7th Nordic Signal Processing Symposium. Iceland, 2006,7-9 ( 6 ) : 342-345.
  • 9HSU C W, LIN C J. A comparison of methods for multiclass support vector machines[J]. IEEE Transactions on Neural Networks, 2002,13 ( 2 ) : 415-425.
  • 10SCHWENKER F. Hierarchical support vector machines for multi-class pattern recognition [ C ]. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems & Allied Technologies, Brighton, U. K. , 2000:561-565.

共引文献91

同被引文献113

引证文献10

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部