期刊文献+

Water cycle evolution in the Haihe River Basin in the past 10000 years 被引量:3

Water cycle evolution in the Haihe River Basin in the past 10000 years
下载PDF
导出
摘要 The water shortage problem in the Haihe River Basin is the most severe in China, and has restricted its economic development. Over-extraction of groundwater has been very severe in the past 30 years. To solve this problem, scientific decisions should be made from a historical perspective. It is important to describe water cycle evolution in the Haihe River basin over the past 10000 years. Datasets of paleoclimate, paleogeography, palynoflora, historical record, isotopic abundance ratio and content were collected for research on different time scales. Some interesting conclusions were drawn by a comprehensive analysis method. First, radiation was the intrinsic force driving the evolution of water cycle. Generally, precipitation increased with temperature. Second, precipitation was high during 8 ka-5 ka B.P., the so-called Yangshao warm period of the Middle Holocene, which recharged the major part of the Quaternary groundwater. Third, heavy floods during this period transported sediment to the seaside, forming the Coastal Plain where cities such as Tianjin, Huanghua, Cangzhou are now located. In the last 3000 years, intermittent moderate floods did not have enough energy to transport sediment to the sea. Rivers usually overflowed in the piedmont region of the Taihang Mountains, and sediment deposited there formed the Piedmont Plain, where locate Shijiazhuang, Xingtai, Handan, Baoding and other cities. Precipitation had a high correlation with temperature in Haihe River Basin in the past 10000 years: the high temperature usually coupled with high precipitation. Today precipitation in the Haihe River Basin is relatively low, owing to low temperature. This study reveals the relationship between temperature, precipitation and river networks in the past 10000 years in Haihe River Basin, which has great scientific and practical importance in understanding the current water circulation and water shortage. The water shortage problem in the Haihe River Basin is the most severe in China, and has restricted its economic development. Over-extraction of groundwater has been very severe in the past 30 years. To solve this problem, scientific decisions should be made from a historical perspective. It is important to describe water cycle evolution in the Haihe River basin over the past 10000 years. Datasets of paleoclimate, paleogeography, palynoflora, historical record, isotopic abundance ratio and content were collected for research on different time scales. Some interesting conclusions were drawn by a comprehensive analysis method. First, radiation was the intrinsic force driving the evolution of water cycle. Generally, precipitation increased with temperature. Second, precipitation was high during 8 ka-5 ka B.P., the so-called Yangshao warm period of the Middle Holocene, which recharged the major part of the Quaternary groundwater. Third, heavy floods during this period transported sediment to the seaside, forming the Coastal Plain where cities such as Tianjin, Huanghua, Cangzhou are now located. In the last 3000 years, intermittent moderate floods did not have enough energy to transport sediment to the sea. Rivers usually overflowed in the piedmont region of the Taihang Mountains, and sediment deposited there formed the Piedmont Plain, where locate Shijiazhuang, Xingtai, Handan, Baoding and other cities. Precipitation had a high correlation with temperature in Haihe River Basin in the past 10000 years: the high temperature usually coupled with high precipitation. Today precipitation in the Haihe River Basin is relatively low, owing to low temperature. This study reveals the relationship between temperature, precipitation and river networks in the past 10000 years in Haihe River Basin, which has great scientific and practical importance in understanding the current water circulation and water shortage.
出处 《Chinese Science Bulletin》 SCIE EI CAS 2013年第27期3312-3319,共8页
基金 supported by the National Natural Science Foundation of China (51279208,51021006,40830637) the National Basic Research Program of China (2006CB403401) supported by the Open Research Fund of the State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research
关键词 海河流域 水循环 演变 水资源短缺问题 开采地下水 同位素丰度比 历史记录 泥沙输送 water cycle evolution, 10000-year scale, temperature changes, water resources, Haihe River Basin
  • 相关文献

参考文献10

二级参考文献101

共引文献214

同被引文献41

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部