期刊文献+

动态网络模式挖掘方法及其应用 被引量:13

Methods for Pattern Mining in Dynamic Networks and Applications
下载PDF
导出
摘要 静态复杂网络研究在揭示社会网络、信息网络和生物网络的形成和演化机制方面取得了重要成果,其方法和结果对系统生物学产生了重要影响.但现实世界中,很多网络是随时间发生变化的,即动态网络.以动态网络为对象,对动态网络的拓扑特性分析、动态网络相关的各种模式挖掘模型和方法进行了综述、比较和分析.特别地,将动态网络模式分析方法应用于生物网络和社会网络,分析了生物网络相关的动态功能模块和模式演化问题、科学家合作网络和社交网络的动态模式.最后指出了动态网络的模式挖掘方法及其在动态生物网络和社会网络研究中存在的问题和挑战,并对未来的研究方向进行了分析. Studies of static complex networks have brought significant progress in revealing the mechanism for forming and evolving of social networks, information networks, and biological networks. However, many real word networks change with time and this type of networks is the so called dynamic networks. This paper focuses on dynamic networks to study the related pattern mining method and its applications in biological and social networks. First, the study analyzes the topological properties of the dynamic networks. Then we make a comparison and analysis to the algorithms and models for variety of pattern mining in dynamic networks. Specifically, we analyze the dynamics properties of biological and social networks. Based on this property, we study the biological networks related pattern mining problems, such as dynamic function module, pattern evolution and complex diseases associated pattern, the dynamic pattern in social network. Finally, some key problems and challenges in biological and social network are highlighted, as well as the future research directions.
出处 《软件学报》 EI CSCD 北大核心 2013年第9期2042-2061,共20页 Journal of Software
基金 国家自然科学基金(60933009 61072103 61100157 61174162)
关键词 动态网络 社会网络 生物网络 模式挖掘 dynamic network social network biological network pattern mining
  • 相关文献

参考文献1

二级参考文献28

  • 1Barabasi A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286(5439): 509-512.
  • 2Newman M E J, Strogatz S H, Watts D J. Random graphs with arbitrary degree distributions and their applications, Phys.Rev. E, 2001, 64(2): 026118.
  • 3Flake G W, Lawrence S R, Giles C L, Coetzee F M. Self-organization and identification of web communities. IEEE Computer, 2002, 35(3): 66-71.
  • 4Fiedler M. Algebraic connectivity of graphs. Czech. Math.Journal, 1973, 23(98): 298-305.
  • 5Pothen A, Simon H, Liou K P. Partitioning sparse matrices with eigenvectors of graphs. SlAM Journal of Matrix Analysis and Application, 1990, 11(3): 430-452.
  • 6Kernighan B W, Lin S. An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal, 1970, 49(2):291-307.
  • 7Wu F, Huberman B A, Finding communities in linear time: A physics approach. Eur. Phys. J, B,2004, 38(2):331-338.
  • 8Newman M E J. Fast algorithm for detecting community structure in networks. Phys. Rev. E, 2004, 69(6): 066133.
  • 9Girvan M, Newman M E J. Community structure in social and biological networks. In Proc. the National Academy of Science, USA, 2002, 99(12): 7821-7826.
  • 10Freeman L C. A set of measures of centrality based upon betweenness, Sociometry, 1977, 40: 35-41.

共引文献7

同被引文献109

引证文献13

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部