期刊文献+

SM2高速双域Montgomery模乘的硬件设计 被引量:11

A High Speed Structure for Dual-Field Montgomery Modular Multiplication in SM2
下载PDF
导出
摘要 作为由国家密码管理局公布的SM2椭圆曲线公钥密码算法的核心运算,模乘的实现好坏直接决定着整个密码芯片性能的优劣.Montgomery模乘算法是目前最高效也是应用最为广泛的一种模乘算法.本文基于Montgomery模乘算法,设计了一种高速,且支持双域(GF(p)素数域和GF(2m)二进制域)的Montgomery模乘器.提出了新的实现结构,以及一种新型的Wallace树乘法单元.通过对模块合理的安排和复用,本设计极大的缩小了时间消耗与硬件需求,节省了大量的资源.实现256位双域模乘仅需0.34μs. Being the key algorithm of SM2, the special elliptic curve cryptography algorithm presented by OSCCA, modular multiplication defines the system's overall performance. One of the most efficient and widely used modular multiplication algorithms is Montgomery modular multiplication algorithm. This paper presents a new hardware architecture to realize modular multiply in dual field (GF(p) and GF(2m)) based on the improved dual--field Montgomery modular multiplication' s algorithm. A new kind of Wallace tree multiplier is also presented in this paper. This multiplier could realize higher performance with less computing resource and lower timing consumption due to the reasonable arrangement and reusing of modules. One complete operation of 256 bit dual--field modular multiplier can be finished in 0. 34μs.
出处 《微电子学与计算机》 CSCD 北大核心 2013年第9期17-21,共5页 Microelectronics & Computer
关键词 SM2 模乘运算 MONTGOMERY算法 双域实现 SM2 modular multiplication Montgomery algorithm dual field realization
  • 相关文献

参考文献6

  • 1Janagan M, Devanathan M. Area compactness archi- tecture for elliptic cryptography[C]// 2012 Interna- tional Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME). USA.. Hawaii, 2012 : 131-134.
  • 2Dimitris Schinianakis, Thanos Stouraitis. A RNS montgomery multiplication architecture [ C]// 2011 IEEE Symposium on Circuits and System. France: Nice, 2011 : 1167-1170.
  • 3Tenca F, Savas E, Koc C K. A design framework for scalable and unified multipliers in GF(p) and GF(2m) [J]. International Journal of Computer Research, 2004,13(1) : 68-83.
  • 4赵翠华,娄冕,张洵颖,等.一种改进的基于Kogge--Stone结构的并行前缀加法器[J].微电子与计算机,2011,28(2):47-50.
  • 5史焱,吴行军.高速双有限域加密协处理器设计[J].微电子学与计算机,2005,22(5):8-12. 被引量:14
  • 6刘建国,张军,杨晓辉,戴紫彬.有限域模乘专用指令设计[J].计算机工程,2011,37(21):105-107. 被引量:4

二级参考文献19

  • 1史焱,吴行军.高速双有限域加密协处理器设计[J].微电子学与计算机,2005,22(5):8-12. 被引量:14
  • 2Victor M, Use of Elliptic Curves in Cryptography[C]//Proc. of Lecture Notes in Computer Sciences. New York, USA: Springer- Verlag, 1986.
  • 3Neal K. Elliptic Curve Cryptosystems[J]. Mathematics of Com- putation, 1987, 48(13): 203-209.
  • 4Tenca A F, Todorov G, Koc C C. High-radix Design of a Scalable Modular Multiplier[C]//Proc. of Cryptograpbic Hardware and Embedded Systems'01. Heidelberg, Germany: Springer-Verlag, 2001.
  • 5Keutzer K, Malik S, Newton A R. From ASIC to ASIP: The Next Design Discontinuity[C]//Proc. of the 2002 IEEE International Conference on Computer Design. Washington D. C., USA: IEEE Computer Science Press, 2002.
  • 6Altera Corporation. Stratix III Device Handbook[EB/OL]. (2010- 01-15). http://www.altera.com.
  • 7Akashi S, Kohji T. A Scalable Dual-field Elliptic Curve Cry- ptographic Processor[J]. IEEE Transactions on Computers, 2003, 52(4): 449-460.
  • 8Schneider B. Applied Cryptography: Protocols, Algorithms,and Source Code in C, John Wiley & Sons, New York, 2ndedition, 1996.
  • 9Stinson D R. Cryptography: Theory and Practice, CRCPress, Boca Raton, Florida, 1995.
  • 10Montgomery P L. Modular Multiplication Without Trail Division. Mathematics of Computation, April 1985, 44(170):519~521.

共引文献15

同被引文献71

引证文献11

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部