期刊文献+

一种基于改进的CS-LBP算子纹理图像自适应检索方法 被引量:3

A Self-Adaptive Texture Image Retrieval Method Based on the Improved CS-LBP Operator
下载PDF
导出
摘要 具有自适应性的方向局部二值描述符(SD-LBP)通过引入自适应对比性的阈值t增加对图像局部区域及局部纹理过渡区域信息的处理,使图像检索过程中产生的噪声对检索效果的影响达到最小.采用3组实验方案对SD-LBP算子与相关算子的检索效果进行了比较分析.实验结果显示,本文算子在保持CS-LBP算子数据维数不变的条件下,对图像噪声处理更具鲁棒性,同时在检索效果、视觉特性等方面具有明显的优势. The self--adaptive direction local binary operator (SD--LBP) increases the information processing of the image local region and the transition region of image texture, so that the impact of image noise reaches a minimum value. Three groups of experimental program are used to analyze the retrieval performance of the SD--LBP operator and other operators. The image retrieval results based on texture spectrum show that when the operator keeps the CS--LBP data dimensions unchanged, the SD--LBP operator has stronger robustness in the processing of image noise, and it also has obvious advantages in image retrieval efficiency and visual properties.
出处 《微电子学与计算机》 CSCD 北大核心 2013年第9期75-78,共4页 Microelectronics & Computer
基金 国家自然科学基金(61071161) 国家自然科学基金委员会和中国工程物理研究院联合基金(11176018)
关键词 中心对称二值模式(CS--LBP) 纹理谱 自适应性 图像检索 center symmetrical--LBP (CS--LBP) texture spectrum adaptive image retrieval
  • 相关文献

参考文献3

二级参考文献28

  • 1应宏微,姚明海,张永华.基于纹理分析和垂直投影的车牌定位算法[J].控制工程,2004,11(5):432-435. 被引量:13
  • 2穆长江,苑玮琦.基于纹理特征的车牌定位方法[J].控制工程,2004,11(6):574-576. 被引量:14
  • 3许礼武,许伦辉,黄艳国.基于小波分解的车牌定位算法[J].计算机工程,2006,32(21):191-193. 被引量:6
  • 4李刚,曾锐利,林凌,王蒙军.基于数学形态学的车牌定位算法[J].仪器仪表学报,2007,28(7):1323-1327. 被引量:67
  • 5HARALICK R M. Statistical and structural approaches to textures[J].Proceedings IEEE, 1979,67(5) :786-804.
  • 6MARJANATH B S, MA M Y. Texture features for browsing and retrieval of image data [ J ]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1996,18 ( 8 ) :837- 842.
  • 7Text of ISO/IEC15938-3. Multimedia content description interface part 3 : visual final committee draft [ R ]. ISO/IEC/JTCI/SC29/WGII,Doe,N4.62, IS. 1. ] :[s. n. ] ,2001.
  • 8MPEG- 7 visual experimentation model ( XM ) [ R ]. version 10.0, ISO/IEC/JTCI/SC29/Wgii, Doc, N4.63, [ S. 1. ] : [ s. n. ] ,2001.
  • 9HARALICK R M, SHANMAGAM K, DINSTEIN I. Textural featurs for image classification [ J ]. IEEE Transactions on Systems, Man and Cybernetics, 1973,3:610-621.
  • 10FUNG P W, GREBBIN G, ATTIKIOUZEL Y. Contextural classification and segmentation of textural images: proceedings of the 1990 International Conference on Aconstics, Speech, and Signal Processing-ICASSP 90 [ C ]. Albuquerque: IEEE, 1990:2329- 2332.

共引文献21

同被引文献28

  • 1Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection [ C ]//Proceedings of Computer Vision and Pattern Recognition. San Diego, CA : IEEE Computer Society,2005:886 - 893.
  • 2Heikkilt M,Pietikainen M,Schmid C. Description of Interest Regions with Local Binary Patterns[ J] .IEEE Conference on Pattern Recognition,2009,42(3 ) :425 - 435.
  • 3Yu J, Qin Z C, Wan T, et al. Feature Integration Analysis of Bag-of-Features Model for Image Retrieval [ J ] Neurocomputing, 2023,120 : 355 - 364.
  • 4Ojala T, Pietikanien M, Harwood D. A Comparative Study of Texture Measures with Classification Based on Feature Distributions[ J]. Pattern Recognition, 1996,29 ( 1 ) :51 - 59.
  • 5Zaheer Y. Content-based image retrieval [C] //Sec-ond International Conference on Digital Image Process-ing. International Society for Optics and Photonics, 2010.
  • 6Flickner M, et al. Query by image and video content:The QBIC system [j]. Computer, 1995,28 (9):23-32.
  • 7Carlson B. Taking on visual recognition's tough on-linetest : Web still & video image content search & retrieval[J]. Advanced imaging, 1997,12 (4): 3.
  • 8Bach J R, et al. The virage image search engine: anopen framework for image management [ C ]//SPIE Stor-age and Retrieval for Image and Video Databases IV.1996: 76-87.
  • 9Fentland A, et al. Photobook: Content-based ma-nipulation of image databases [J ]. International Jour-nal of Computer Vision, 1996,18 (3): 233 — 254.
  • 10Smith J R, Chang S F. VisualSEEk: a fully auto-mated content-based image query system [C] //Pro-ceedings of the fourth ACM international conference onMultimedia, ACM, 1997: 87 — 98.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部