期刊文献+

基于SVM的fMRI数据分类及MCI诊断应用 被引量:4

fMRI data classification based on SVM and its application in diagnosis of MCI
下载PDF
导出
摘要 为了有效提高轻度认知障碍(mild cognitive impairment,MCI)的早期诊断效果,提出了基于SVM的fMRI数据分类方法,并构建分类准确率更高的集成分类器。传统的MCI诊断过程,检验周期长、主观误差较大,为此,利用数据挖掘技术,采用SVM数据分类方法,通过提取单个体素的分类特征,对fMRI图像作分类,并分析分类准确率较高的体素分布区域。通过加权平均的方法,构建集成分类器,更好地辅助临床诊断。 To improve the quality of early diagnosis of MCI (mild cognitive impairment) effectively, a data classification method based on SVM (support vector machine) is presented and a ensemble classifier with higher classification accuracy is constructed. The traditional MCI diagnosis processes have long inspection cycles and high subjective errors. To achieve the data mining, the SVM data classification method is proposed. The feature is extracted from each voxel for the classification of fMRI images. Then, the distribution of the voxels with higher classification accuracy is analyzed. Finally, the ensemble classifier is constructed by using weighted means method so as to assist in the clinical diagnosis better.
作者 吕艳阳 相洁
出处 《计算机工程与设计》 CSCD 北大核心 2013年第9期3313-3317,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(60975032) 山西省自然科学基金项目(2011011015-4) 北京市博士后科研活动经费基金项目(Q6002020201201)
关键词 轻度认知障碍 数据分类 支持向量机 分类算法 分类器集成 mild cognitive impairment (MCI) data classification support vector machine (SVM) classification algorithm classifiers ensemble
  • 相关文献

参考文献6

二级参考文献65

共引文献56

同被引文献25

  • 1BROOKMEYER R, JOHNSON E, ZIEGLER G K, et al. Forecasting the global burden of Alzheimer's disease[J]. Alzheimers Dement, 2007, 3 (3): 186-191.
  • 2MISRA C, FAN Y, DAVATZIKOS C. Baseline and longitudinal pat- terns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI[J]. Neurolmage, 2009, 44:1414-1422.
  • 3JORDAN M I, NG A Y, WEISS Y. On spectral clustering: analysis and an algorithm[A]. Proceedings of the 14th Advances in Neural Informa- tion Processing Systems (NIPS 2002)[C]. Cambridge, MA, 2002. 849-856.
  • 4YEO B T, OU W. Clustering fMRI time series[EB/OL].http://people. csail.mit. 6867fMRI.pdf, 2004.
  • 5WU C. Feature selection for fMRI classification[J]. Program of Computational Biology Carnegie Mellon University Pittsburgh, PA 15213.
  • 6WANG C, TIAN J, CHEN S, et al. Image segmentation using spectral clustering[A]. 2012 IEEE 24th International Conference on Tools with Artificial Intelligence. IEEE Computer Society[C]. 2005. 677-678.
  • 7ALKAN S, YARMAN V F T. Localization of semantic category clas- sification in fMRI images[A]. Signal Processing and Communications Applications Conference (SIU)[C]. 2014. 2178-2181.
  • 8FOWLKES C, BELONGIE S, CHUNG F, et al. Spectral grouping using the Nystrom method [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 214-225.
  • 9CHEN W Y, SONG Y, BAI H, et aL Parallel spectral clustering in distributed systems [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 568-586.
  • 10YAN C G, ZANG Y F. DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI [J]. Frontiers in Systems Neurosci- ence, 2010, 5(4):13.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部