期刊文献+

基于混沌时间序列的云工作流活动运行时间预测模型 被引量:2

Forecasting model for activity durations in cloud workflow based on chaotic time series
下载PDF
导出
摘要 针对线性时间序列方法无法有效预测云工作流活动的运行时间的问题,提出一种基于混沌时间序列的云工作流活动运行时间预测模型。该模型利用相空间重构理论和径向基函数神经网络实现对非线性时间序列的预测。相空间重构理论能够有效刻画云工作流活动的运行时间因受系统性能、网络状况等多种因素影响而呈现的非线性特征;径向基函数神经网络能够有效预测混沌时间序列。模拟实验分别考虑了计算密集型的科学工作流和实例密集型的商务工作流的情况。实验结果表明,无论长周期活动还是短周期活动,混沌时间序列模型明显优于其他有代表性的活动运行时间预测方法。 Aiming at the problem that the linear time series did not efficiently predict the activity durations of cloud workflow, a forecasting model for activity durations in cloud workflow systems based on chaotic time series was pro- posed. The reconstructed phase space theory and Radical Basis Function (RBF) neural network was employed by this model to predict nonlinear time series. The reconstructed phase space theory could depict the nonlinear charac- teristics of cloud workflow due to system performance, network conditions and other factors, and RBF neural net- work was proved to be suitable for predicting chaotic time series. Computation intensive scientific applications and instance intensive business applications were taken into account in simulation scenarios, and the results showed that the proposed chaotic time series model was superior to the existing representative time-series forecasting strategies for both long-duration and short-duration activities.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2013年第8期1920-1927,共8页 Computer Integrated Manufacturing Systems
基金 国家863计划资助项目(2011AA040501) 国家自然科学基金资助项目(71271071) 中央高校基本科研业务费专项资金资助项目(2012HGBZ0208) 上海高校知识服务平台-可信物联网产学研联合研发中心(筹)资助项目(ZF1213) 武汉大学软件工程国家重点实验室开放基金资助项目(SKLSE2012-09-10)~~
关键词 云工作流系统 混沌时间序列 相空间重构 径向基函数神经网络 时间预测 cloud workflow system chaotic time series reconstructed phase space radical basis function neural net-work time prediction
  • 相关文献

参考文献24

  • 1NADEEM F,FAHRINGER T.Predicting the execution time of grid workflow applications through local learning[C]//Proceedings of the Conference on High Performance Computing Networking,Storage and Analysis.New York,N.Y.,USA:ACM,2009:1-12.
  • 2SMITH W,FOSTER I,TAYLOR V.Predicting application run times with historical information[J].Journal of Parallel and Distributed Computing,2004,64(9):1007-1016.
  • 3JIANG B,WENG C L,DU J,et al.A QoS-aware and faulttolerant workflow composition for grid[C]// Proceedings of the 7th International Conference on Grid and Cooperative Computing.Washington,D.C.,USA:IEEE Computer Society,2008:510-516.
  • 4MARTINEZ A,ALFARO F J,SANCHEZ J L,et al.A new cost-effective technique for QoS support in clusters[J].IEEE Transactions on Parallel and Distributed Systems,2007,18(12):1714-1726.
  • 5LIU X,CHEN J J,LIU K,et al.Forecasting duration intervals of scientific workflow activities based on time-series patterns[C]//Proceedings of the 4th International Conference on Science.Washington,D.C.,USA:IEEE Computer Society,2008:23-30.
  • 6PRODAN R,FAHRINGER T.Overhead analysis of scientific workflows in grid environments[J].IEEE Transactions on Parallel and Distributed Systems,2008,19(3):378-393.
  • 7PANDEY S,WU L L,GURU S M,et al.A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments[C]// Proceedings of the 24th IEEE International Conference on Advanced Information Networking and Applications.Washington,D.C.,USA:IEEE Computer Society,2010:400-407.
  • 8WU Zhangjun,NI Zhiwei,GU Lichuan,et al.A revised discrete particle swarm optimization for cloud workflow scheduling[C]// Proceedings of International Conference on Computational Intelligence and Security.Washington,D.C.,USA:IEEE Computer Society,2010:184-188.
  • 9DOBBER M,ROB M,KOOLER G.A prediction method for job runtimes on shared processors:survey,statistical analysis and new avenues[J].Performance Evaluation,2007,64 (7):755-781.
  • 10GLASNER C,JENS V.Adaps-a three-phase adaptive prediction system for the run-time of jobs based on user behaviour[J].Journal of Computer and System Sciences,2011,77(2):244-261.

二级参考文献95

共引文献144

同被引文献19

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部