摘要
研究了机械臂的位置跟踪问题,提出了基于神经网络的自适应输出反馈控制方法.该方法无需系统精确的数学模型,适用于具有非线性不确定性和外界干扰的机械臂控制系统.设计的控制器由三部分组成:基于动态补偿器的输出反馈控制项、神经网络自适应控制项和鲁棒控制项.神经网络的权值自适应学习率由Lyapunov稳定性理论得出.仿真结果表明设计的控制器能驱动机械臂精确跟踪期望的位置,验证了该控制方法的有效性.
The position tracking control problem for manipulators is addressed, and an adaptive output feedback controller based on neural network is proposed. The controller does not need an exact model, and is applicable to manipulators control systems with nonlinear uncertain dynamics and environmental disturbances. The controller is composed of three parts: output feedback control based on dynamic compensator, a neural network, and an item of robust control. The adaptive learning law of neural network can be obtained based on the Lyapunov stability theory. Numerical simulations show excellent performance of position control for picking manipulators.
出处
《应用科学学报》
CAS
CSCD
北大核心
2013年第4期427-433,共7页
Journal of Applied Sciences
基金
中央高校基本科研业务费专项资金(No.DL13BB14)资助
关键词
机械臂
位置跟踪控制
输出反馈
神经网络自适应
manipulator, position tracking control, output feedback, adaptive neural network