期刊文献+

舰船装备维修费用预测的PSO-LSSVM方法研究 被引量:2

Application of the PSO-LSSVM for the Weapon Equipment's Maintenance Cost Prediction
下载PDF
导出
摘要 提出了一种基于粒子群优化的最小二乘支持向量机(PSO-LSSVM)模型的舰船装备维修费用预测方法,该方法利用PSO算法的收敛速度快和全局收敛能力,优化LSSVM模型的惩罚因子和核函数参数,避免了人为选择参数的盲目性,提高了LSSVM模型的预测精度。以某舰船装备维修费用为例进行实例验证,计算结果表明,这种方法比其他方法有更好的预测精度。 In order to improve the accuracy of weapon equipment's maintenance cost prediction, a least squares support vector machine (LSSVM) model optimized by the particle swarm optimization (PSO) is proposed in this paper. Optimizing two parameters of LSSVM model by PSO abilities of the fast convergence and whole optimization, thus avoiding the blindness of man-made choice, the LSSVM-PSO model can enhance the capability of forecasting. An example of the prediction of weapon equipment's maintenance costs is given, and the result shows that the method can bring less error and better precision compared with other methods.
作者 李哲龙
机构地区 中国人民解放军
出处 《舰船电子工程》 2013年第8期129-131,173,共4页 Ship Electronic Engineering
关键词 粒子群 最小二乘支持向量机 装备维修费用 预测 particle swarm, least squares support vector machine, equipment maintenance costs, prediction
  • 相关文献

参考文献10

二级参考文献80

共引文献91

同被引文献15

  • 1GUO Li. The Research of Tipping Paper Porosity Online Detection System[D]. Kunming University of Science and Techinology, 2002.
  • 2LIU Shoufeng. The Research of the Application of image processing technology in the detection of porosity[D]. Kumming: Kunming University of Science and Techinology, 2007.
  • 3JIANG Changjie, DAI Suiyu. Study on the porosity owing to implanting the dyadic image treatment technology[J]. Master Thesis of Kunming University of Science and Technology, 2007.
  • 4XU Fangzhou, PAN Feng. Soft Sensing of the Parameters in Sewage Disposal System Based on PSO-LSSVM[J]. Journal of Jiangnan University, 2010, 9(3):253-256.
  • 5WEN Tingxin, ZHANG Bo. PSO-LSSVM model for Slope Stability Prediction of Open Pit Coal Mine[J]. Nonferrous Metals(Mine Section), 2014, 66(1):51-56.
  • 6Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.
  • 7LI Fangfang, ZHAO Yingkai and YAN Xin, The toolbox and its application based on Matlab of least squares support vector machine[J]. Computer Application, 2006,26(12):358-360.
  • 8Kennedy J, Eberhart R. Particle swarm optimization[A]. Proceeding of 1995 IEEE International Conference on Neural Networks[C]. Perth, W A: IEEE Press, 1995.
  • 9SHI Y H, EBERHART R C. Parameter selection in particle swarm optimization[A]. Annual Conference on Evolutionary Programming[C]. San Diego: [s. n.], 1998.
  • 10张乔斌.基于灰色关联度和SVM舰船设备维修费用预测[J].计算机与数字工程,2010,38(10):15-18. 被引量:9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部