期刊文献+

利用重叠社区检测技术提高大众分类网络的个性化推荐性能

Leveraging Overlapping Communities Detection Improve Personalized Recommendation in Folksonomy Networks
下载PDF
导出
摘要 在大众分类网络中,允许用户使用个性化标签对资源进行标注,标签可以使用户方便地表达的自己的兴趣与偏好.但是,标签自由、松散的分类方式使标签存在冗余、歧义以及一词多义的问题,使用户难以发现自己需要的资源,因此在基于标签的推荐系统中,推荐精确性低,用户体验差,社区发现(聚簇)技术是解决这一问题的重要手段.本文从构建标签共现图入手,采用标签共现图的重叠社区发现技术来理解标注的正确含义、减少冗余歧义标签带来的噪声.在此基础上设计了完整的个性化推荐方案,经过真实标签网络数据验证表明标签重叠社区检测能够提高推荐质量,算法在精确性和多样性上均有较好的改进. In folksonomy based networks, users are allowed to annotate conveying the user's interest and preference information. However, this it certain costs:redundant, ambiguous and polysemy, which can render resources with personalized tags, which can facilitate users flexibility and loosening method of classification brings with resource discovery difficult. So, in tag-based recommenda- tion, the recommended result of precision and diversity is low and has a poor user experience. Communities detection ( clustering } provides a means to remedy these problems. Starting from a tagging co-occurrence network, we leverage overlapping communities de- tection method in tagging network to comprehend the proper meaning of the tags and reduce tagging noise. Based on o- verlapping communities detection, a complete scheme of personalized recommendation was presented. We validate this approach through evaluation of proposed personalization algorithm using data from a real collaborative tagging Web site, the result demonstrates that overlapping communities detection could considerably improve the precision and diversity of recommendations.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第9期2036-2041,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61103051)资助 教育部人文社会科学研究项目(12YJAZH120)资助 江苏省自然科学基金项目(BK2010526)资助 湖州市自然科学基金项目(2011YZ08)资助
关键词 大众分类 标签 重叠社区发现 个性化推荐 folksonomy tags overlapping communities detection personalized recommendation
  • 相关文献

参考文献28

  • 1Mathes A. Folksonomies-cooperative classification and communica?tion through shared metadata[J]. Computer Mediated Communi?cation ,2004 , 47(10) :1-15.
  • 2Tso-Sutter K H L,Marinho L B,Schmidt-Thieme L. Tag-aware rec?ommender systems by fusion of collaborative filtering algorithms[CJ. Proceedings of the 2008 ACM Symposium on Applied Com?puting ,Fortaleza, Ceara, Brazil, 2008: 1995 -1999.
  • 3Liang H, Xu Y ,Li Y ,et al. Collaborative filtering recommender sys?tems using tag information[CJ. Proceedings of the 2008 IEEE/ WIC/ ACM International Conference on Web Intelligence and Intel?ligent Agent Technology, Sydney, NSW ,2008 : 59'f)2.
  • 4GemmellJ ,Schimoler T ,Mobasher B, et al. Tag-based resource rec?ommendation in social annotation applications[J]. User Model?ing, Adaption and Personalization ,2011 ,6787: 111-122.
  • 5Xu G, Gu Y, Zhang Y, et al. TOAST: a topic-oriented tag-based recommender system[CJ. Proceedings of the 2011 IEEE/WIC/ ACM International Conference on Web Information System Engi?neering, Berlin Heidelberg ,2011 : 158-171.
  • 6Gu Y, Yang Z,Kitsuregawa M. Towards effective recommendation in a social annotation system through group extraction[EB/OL]. http:// db-event.Jpn. org/ deirn2011/proceedingslpdflt96. pdf ,2011-12.
  • 7Lancichinetti A,Radicchi F ,RamascoJ J ,et al. Finding statistically sig?nificant communities in networks[J]. PLoS ONE ,2011 ,6(4) :18961.
  • 8Begelman G, Keller P, Smadja F. Automated tag clustering: impro?ving search and exploration in the tag space[CJ. Proceedings of the 15th International World Wide Web Conference on Collabora?tive Web Tagging Workshop ,Edinburgh , UK ,2006.
  • 9Koutsonikola V, Vakali A, Giannakidou E, et al. Clustering of social tagging system users: a topic and time based approach[CJ. Pro?ceedings of the 10th Web Information Systems Engineering, Poznan, Poland,2009:75-86.
  • 10Shepitsen A,GemmellJ,Mobasher B,et al. Personalized recom?mendation in social tagging systems using hierarchical clustering[CJ . Proceedings of the 2008 ACM Conference on Recommender Systems, Lausanne, Switzerland, 2008 :259-266.

二级参考文献20

  • 1Girvan M,et al.Community structure in social and biological networks[J].Proceedings of National Academy of Science,2002,9(12):7821-7826.
  • 2Palla G,et al.Uncovering the overlapping community structures of complex networks in nature and society[J].Nature,2005,435(7043):814-818.
  • 3Yang B,et al.Community mining from signed social networks[J].IEEE Trans.on Knowledge and Data Engineering,2007,19(10):1333-1348.
  • 4Raghavan U N,et al.Near linear-time algorithm to detect community structures in large-scale networks[J].Physical Review E,2007,76(3):036106.
  • 5Jin D,et al.Ant colony optimization with Markov random walk for community detection in graphs .Proceedings of the 15th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'11) .Shenzhen,China:Springer-Verlag,2011.123-134.
  • 6Newman M E J,et al.Finding and evaluating community structure in networks[J].Physical Review E,2004,69(2):026113.
  • 7Newman M E J.Fast algorithm for detecting community structure in networks[J].Physical Review E,2004,69(6):066133.
  • 8Guimera R,et al.Functional cartography of complex metabolic networks[J].Nature,2005,433(7028):895-900.
  • 9Barber M J,et al.Detecting network communities by propagating labels under constraints[J].Physical Review E,2009,80(2):026129.
  • 10Liu X,et al.Advanced modularity-specialized label propagation algorithm for detecting communities in networks[J].Physica A,2010,389(7):1493-1500.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部