期刊文献+

中立型线性随机延迟微分方程的Euler-Maruyama方法的渐近均方稳定性(英文)

AMS-stability of the Euler-Maruyama method for linear neutral stochastic delay differential equations
下载PDF
导出
摘要 研究中立型线性随机延迟微分方程的Euler-Maruyama方法的渐近均方稳定性。建立数值方法渐近均方稳定性的定义,给出Euler-Maruyama方法的渐近均方稳定的充分条件,并证明在这些条件下中立型线性随机延迟微分方程的Euler-Maruyama方法是渐近均方稳定的,给出了支持所得结果的数值算例。 Stability of Euler-Maruyama method for linear neutral stochastic delay differential equations is considered. The definition of asymptotic mean square (AMS)-stability of numerical methods is established. The conditions of asymptotic mean square stability of Euler-Maruyama methods for the system are given. It is shown that the Euler-Maruyama method is AMS-stable under these conditions. The numerical examples are presented to support the obtained results.
作者 周立群
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2013年第4期445-452,457,共9页 Journal of Natural Science of Heilongjiang University
基金 Supported by the Natural Science Foundation of China(60974144) the Foundation for Doctors of Tianjin Normal university(52LX34) Development Program in the Science Research Project for Colleges and Universities of Tianjin of China(20100813)
关键词 中立型随机延迟微分方程 渐近均方稳定性 Euler—Maruyama方法 数值解 方差 neutral stochastic delay differential equations asymptotic mean square stability Euler- Maruyama method numerical solution variance
  • 相关文献

参考文献2

二级参考文献20

  • 1MAO X. Exponential Stability of Stochastic Differential Equations[ M]. New York: Marcel Dekker, 1994.
  • 2MOHAMMED S E A. Stochastic Functional Differential Equations, Research Notes in Mathematics( Vol. 99) [ R]. London :Pitman, 1984.
  • 3BURRAGE K, BURRAGE P M. High strong order explicit Runge - Kutta methods for stochastic ordinary differential equation [ J ]. Appl Numer Math, 1996,22:81 - 101.
  • 4KLOEDEN P E, PLATEN E. Numerical Solution of Stochastic Differential Equations[ M]. Berlin:Springer, 1992.
  • 5MILSTEIN G N. Numerical Integration of Stochastic Differential Equations[ M]. Dordrecht: Kluwer Academic Publishers Group, 1995.
  • 6TIAN T H, BURRAGE K. Two -stage stochastic Runge -Kutta methods for stochastic differential equations[ J ]. BIT Numer Math, 2002,42:625-643.
  • 7MINGZHU L, WANGRONG C, ZHENCHENG F. Convergence and stability of the semi - implicit Euler method for a linear stochastic differential delay equation [ J ]. J Cam, 2004,170:255 - 268.
  • 8BAKER C T H, BUCKWAR E. Numerical analysis of explicit one - step methods for stochastic delay differential equations[ J]. LMS J Comput Math, 2000,3:315 -335.
  • 9BUCKWAR E. Introduction to the numerical analysis of stochastic delay differential equations[ J ]. J Cam, 2000,125:297 -307.
  • 10MAO X, SABANIS S, Numerical solutions of stochastic differential delay equations under local Lipschitz eondition[J]. J Cam,2003, 151 : 215 -227.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部