摘要
研究中立型线性随机延迟微分方程的Euler-Maruyama方法的渐近均方稳定性。建立数值方法渐近均方稳定性的定义,给出Euler-Maruyama方法的渐近均方稳定的充分条件,并证明在这些条件下中立型线性随机延迟微分方程的Euler-Maruyama方法是渐近均方稳定的,给出了支持所得结果的数值算例。
Stability of Euler-Maruyama method for linear neutral stochastic delay differential equations is considered. The definition of asymptotic mean square (AMS)-stability of numerical methods is established. The conditions of asymptotic mean square stability of Euler-Maruyama methods for the system are given. It is shown that the Euler-Maruyama method is AMS-stable under these conditions. The numerical examples are presented to support the obtained results.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2013年第4期445-452,457,共9页
Journal of Natural Science of Heilongjiang University
基金
Supported by the Natural Science Foundation of China(60974144)
the Foundation for Doctors of Tianjin Normal university(52LX34)
Development Program in the Science Research Project for Colleges and Universities of Tianjin of China(20100813)