期刊文献+

基于灰度共生矩阵和Mean Shift的目标跟踪算法

Target tracking algorithm based on gray scale coexistence matrix and Mean Shift
下载PDF
导出
摘要 针对运用单一颜色特征描述运动目标时抗干扰性较差的问题,提出一种融合灰度共生矩阵和颜色特征的Mean-Shift目标跟踪算法.采用灰度共生矩阵推导的6个纹理特征参数和颜色特征分别表征跟踪目标,引入马氏距离计算纹理特征的相似度,并结合Bhattacharyya系数计算颜色特征的相似度,同时利用Mean Shift算法进行目标定位.实验表明,改进算法能在复杂背景下,有效、准确地实现目标跟踪. Aimed at the problem that there is poor anti-jamming ability when the single color feature is used to describe the moving target, a target tracking algorithm was proposed based on Mean Shift which mixed gray level co-occurrence matrix (GLCM) and color feature together. Six parameters of texture de- duced with GLCM and color feature parameters were used to characterize the tracking target. The similari- ty of texture feature was calculated by introducing Mahalanobis distance, and the Bhattacharyya coefficient was applied to calculate color feature similarity. Meantime, Mean Shift algorithm was used for target posi- tioning. Experimental result showed that the improved algorithm could be used to track moving target ef- fectively and accurately on a complex background.
作者 张永 刘巧玲
出处 《兰州理工大学学报》 CAS 北大核心 2013年第4期89-93,共5页 Journal of Lanzhou University of Technology
关键词 灰度共生矩阵 目标跟踪 Mean SHIFT 纹理 马氏距离 gray level co-occurrence matrix target tracking Mean Shift texture Mahalanobios distance
  • 相关文献

参考文献10

  • 1FAUSTINO LAXERDA de S D, MACHADO L S,MORAESR NL Integration of tracking systems for the development of virtual reality applications[J]. Latin America Transactions, IEEE, 2010,8(6) :714-721.
  • 2TANG Chih-Wei. Spatiotemporal visual considerations for vid- eo coding [J]. IEEE Transactions on Multimedia,2007,9(2) 231-238.
  • 3MAGGIO E, CAVALLARO A. Multi-part target representa- tion for color tracking [C]//IEEE International Conference on Image Processing. Genova: IEEE, 2005,729-732.
  • 4袁霄,王丽萍.基于MeanShift算法的运动人体跟踪[J].计算机工程与科学,2008,30(4):46-49. 被引量:27
  • 5李冬,陈恳,赵学梅,杨任尔.一种结合Mean-shift和粒子滤波的视频跟踪算法[J].宁波大学学报(理工版),2011,24(1):24-29. 被引量:2
  • 6李文辉,周强,王莹,张德才.基于均值偏移粒子滤波的自适应跟踪[J].吉林大学学报(工学版),2012,42(2):407-411. 被引量:5
  • 7AVIDAN Ensemble tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29 (2) : 261- 271.
  • 8袁广林,薛模根,谢恺,等.多颜色直方图自适应组合MeanShift跟踪[J].中国图象图形学撤.2011,16(10):1832-1840.
  • 9宋丹,赵保军,唐林波.融合角点特征与颜色特征的Mean-Shift目标跟踪算法[J].系统工程与电子技术,2012,34(1):199-203. 被引量:16
  • 10THEODORIDIS S, KOUTROUMBAS K. Pattern recognition [M]. Third Edition. San Diego Academic Press, 2006.

二级参考文献47

  • 1李乡儒,吴福朝,胡占义.均值漂移算法的收敛性[J].软件学报,2005,16(3):365-374. 被引量:88
  • 2DONG Zhe YOU Zheng.A novel extended Kalman filter for a class of nonlinear systems[J].Progress in Natural Science:Materials International,2006,16(9):912-918. 被引量:6
  • 3Deilamani M J, Asli R N. Moving object tracking based on Mean-Shift algorithm and feature fusion [C] //Proc. of the International Conference on Artificial Intelligence and Signal Processing, 2011: 48 - 53.
  • 4Du M T, Jie Y L. Mean-Shift based defect detection in multicrystalline solar wafer surfaces[J]. IEEE Trans. on Industrial In f ormatics , 2011,7(1) :125 - 135.
  • 5Cheng Y. Mean Shift, mode seeking and clustering [J].IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8) :160 - 172.
  • 6Li P H. An adaptive binning color model for Mean-Shift tracking[J].IEEE Trans. on Circuits and Systems for Video Technology ,2008, 18(9):1293 - 1299.
  • 7Jia X H, Shao Z L, Chang L Z. Extension of Mean-Shift vector with theoretical analysis and experiment[C]//Proc, of the 3rd International Conference on Intelligent System and Knowledge Engineering, 2008 : 1007 - 1012.
  • 8Wu Y, Wu B, Liu J, et al. Probabilistic tracking on riemannian manifolds[C]//Proc, of the 19th International Conference on Pattern Recognition, 2008 ; 1 - 4.
  • 9Tian G, Hu R M, Wang Z Y. Object tracking algorithm based on Mean-Shift algorithm combining with motion vector analysis[C]// Proc. of the 1st International Conference on Education Technology and Computer Science, 2009 : 987 - 990.
  • 10Khan Z H, Gu I Y, Backhouse A G. Robust visual object tracking using multi-mode anisotropic Mean-Shift and particle filters [J]. IEEE Trans. on Circuits and Systems for Video Technology ,2011, 21(1) :74 - 87.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部