期刊文献+

引入逆学习的量子自适应禁忌搜索算法 被引量:6

A Quantum-Inspired Adaptive Tabu Search Algorithm with Inverse Learning
下载PDF
导出
摘要 为增强量子进化算法的局部优化能力,结合禁忌搜索思想,提出一种具有逆学习机制的量子自适应禁忌搜索算法.算法采用一种量子自适应邻域映射机制,且禁忌表的禁忌长度可随量子态动态调整,这些策略较好的解决了集中性和多样性搜索的矛盾.另外,算法增加了一种能使个体尽快摆脱劣势区域的逆学习量子更新模式.设计的算法能较好的平衡全局和局部搜索,能有效避免量子过快陷入局部极值.通过实验表明提出的算法具有更好的局部搜索能力. In order to enhance the local optimization capability of quantum-inspired evolutionary algorithm(QEA),a novel QEA incorporating inverse learning mode is proposed based on adaptive tabu search.In this algorithm,the neighborhood structure and tabu tenure can be adjusted dynamically casing quantum entanglement states,so that the conflict between intensification and diversification is well solved.At the same time,a novel quantum updating mode named inverse learning is designed to help individuals get out of inferior region.Therefore,better balance between exploration and exploitation can be achieved to escape from a local optimum. Experiment results show that local optimization ability has been advanced effectively through the proposed algorithm.
作者 钱洁 郑建国
出处 《电子学报》 EI CAS CSCD 北大核心 2013年第6期1069-1075,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.70971020) 湖北省教育厅科研重点项目(No.D20131804)
关键词 量子进化算法 自适应 禁忌搜索 函数优化 组合优化 quantum-inspired evolutionary algorithm adaptive tabu search function optimization combinatorial optimization
  • 相关文献

参考文献16

  • 1Han K H, Kim J H. Quantum - inspired evolutionary algorithmfor a class of combinatorial optimization[J]. THEE Transactionson Evolutionary Confutation,2002,6(6) :580 - 593.
  • 2周殊,潘炜,罗斌,张伟利,丁莹.一种基于粒子群优化方法的改进量子遗传算法及应用[J].电子学报,2006,34(5):897-901. 被引量:33
  • 3Dai H, Yang Y, Cunhua. Crai^>act quantum crossover basedclonal selection algorithm[J]. ICIC Express Letters an Interna-tional Journal of Research and Surveys, 2011 ’5 ( 6): 2009 -2015.
  • 4Defoin P M, Stefan S,Nikola K. Quantum-inspired evolutionaryalgorithm: A multimodel EDA[ J] . TEEE Transactions on Evo-lutionary Computation, 2009,13(6) : 1218 - 1231.
  • 5Aipaia P,Maisto D,Manna C. A quantum-inspired evolutionaryalgorithm with a competitive variation operator for multiple-fault diagnosis [ J]. Applied Soft Computing, 2011,11 (08):4655 - 4666.
  • 6李盼池,宋考平,杨二龙.基于相位编码的量子蚁群算法[J].系统工程理论与实践,2011,31(8):1565-1570. 被引量:11
  • 7Wang L,Li L. An effective hybrid quantum-inspired evolution-aiy algorithm for parameter estimation of chaotic systems[ J].Expert Systems with Applications, 2010,37(2) :1279 - 1285.
  • 8Zhang G X,Gheorghe M, Wu C Z. A quantum-inspired evolu-tionary algorithm based on P systems for a class of combinatori-al optimization [J] .Fundamenta Informaticae,2008,87( 1) :93-116.
  • 9Glove F, Laguna M. Tabu search [J]. Journal of Confuting,1990,1(3):190 - 206.
  • 10Chou Y, Yang Y, Chiu C. Classical and quantum-inspiredTabu search for solving 0/1 knapsack problem[A]. Proceed-ings of the IEEE International Conference on Systems, Man,and Cybemetics[C]. Anchorage, Alaska: IEEE,2011.1364 -1369.

二级参考文献45

共引文献75

同被引文献94

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部