期刊文献+

基于并行抽样的海量数据关联挖掘算法 被引量:3

Mass data association mining based on parallel random sampling
下载PDF
导出
摘要 在"信息爆炸"的当今社会,海量数据对数据挖掘提出新的挑战。文章针对海量数据挖掘时所面临的内存和性能问题,提出了一种基于并行随机数据抽样的云频繁项集挖掘算法。该算法可以实现在单次扫描海量数据进行并行数据抽样的基础上,对样本数据进行并行的频繁项集挖掘。实验结果表明,通过并行随机抽样算法可以有效抽取反映数据真实情况的样本数据,并对其进行相关清理,在得到样本数据后采用文中所提的并行关联云挖掘算法能有效解决内存和性能方面的问题,为推动数据挖掘在海量数据下的发展奠定了良好基础。 In an age of information explosion, data mining faces new challenges because of mass data. In view of the memory and performance problems faced by mass data mining, a cloud frequent item sets mining algorithm based on parallel random sampling of data is put forward. After the parallel da ta sampling of the single scanning mass data, it can realize the parallel frequent itemsets mining of the sample data. The experimental results prove that the parallel random sampling algorithm can effec tively extract data which can reflect the real data sets, and carry on the related cleaning. After obtai ning the sample data, the memory and performance problems can be effectively solved by this parrallel association cloud mining algorithm. This data mining algorithm lays a good foundation for promoting the development of mass data mining.
作者 宛婉 周国祥
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第8期933-937,共5页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金重点资助项目(60633060)
关键词 云计算 并行计算 随机抽样 关联分析 cloud computing parallel computing random sampling correlation analysis
  • 相关文献

参考文献17

  • 1Agrawal R, Imielinski T, Swami A. Ming associations be- tween sets of items in massive databases[C]//Proc of the ACM-SIGMOD 1993 International Conference on Manage- ment of Data, 1993 - 207-216.
  • 2Agrawal R, Srikant R. Fast algorithms for mining associa- tion rules[C]//Int ConI on Very Large Databases, 1994- 487-499.
  • 3TanPN,SteinbachM,Kumarv.数据挖掘导论[M].范明,范宠建,译.北京:人民邮电出版社,2012:176-180.
  • 4Fang M, Shivakumar N, Garcia-Molina H, et al. Computing iceberg queries efficiently[-C]//Int Con{ on Very Large Da- tabases, 1998 : 299- 310.
  • 5Park J S,Chen M S,Yu P S. Efficient parallel data mining of association rules[-C]//4th International Conference on In- formation and Knowledge Management, 1995:233-235.
  • 6HanJiawei,KamberM数据挖掘概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2001:149-175.
  • 7Savasere A, Omiecinski E, Navathe S ]3. An efficient algo- rithm for mining association rules in large database[C]// Int Conf on Very Large Databases, 1995:432-444.
  • 8Toivonen H. Sampling large database for association rules EC]//Int Conf on Very Large Databases, 1996 : 134- 145.
  • 9Brin S, Motwani R, UIIman J K, et al. Dynamic itemset counting and implication rules for market basket data[-C]// ACM SIGMOD International Conference on the Manage- ment of Data, 1997 : 255- 264.
  • 10Agarwal R C, Aggarwal C C,Prasad V V V. A tree projec- tion algorithm for generation of frequent itemsets [-J-]. Journal of Parallel and Distributed Computing, 2001, 61(3) - 350-371.

二级参考文献64

共引文献193

同被引文献34

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部