期刊文献+

后扭力梁轴头载荷谱仿真及疲劳寿命预测 被引量:8

Simulation of Load Time History of Spindle Nose and Fatigue Life Prediction for Rear Torsion Beam
下载PDF
导出
摘要 为了更准确预测后悬架扭力梁疲劳寿命,对后扭力梁轴头载荷时间历程进行了动态仿真和试验验证。采用多体动态仿真软件ADAMS建立了虚拟样机模型,运用扫频技术得到系统的传递函数,以样车道路实测悬架弹簧垂向位移为参考,利用反求迭代法获得了轴头载荷的时间历程,并通过台架试验对其准确性进行验证,结合部件的S-N疲劳特性曲线,采用准静态法和PalmgrenMiner线性累计损伤法对后扭力梁结构的疲劳寿命进行了预测。结果表明,后扭力梁结构最低寿命为76.4周,而较低寿命区位于横梁中间固定垫片的焊点处,并与实际相符。通过获得的后扭力梁轴头的载荷信息,可以准确地预测结构疲劳寿命,对结构载荷的迭代仿真和寿命预测具有一定的工程应用价值。 For revealing fatigue failure mechanism and accurately predicting fatigue life for rear torsion beam suspension of a car, load time history of a spindle nose is simulated and verified via dynamic analysis and test. The dynamic simulation model of rear torsion beam suspension is established with integrating multibody dynamic analysis software ADAMS. The system transfer function is solved by sweep frequency technique. Associating with the measured suspension spring displacements on a sample road, the load time history of spindle nose is acquired by dynamic iterative simulation and verified by bench test. Combining with the S-N of fatigue characteristic curve, the fatigue life of the rear torsion beam suspension is evaluated by quasi- static stress analysis and Palmgren-Miner linear cumulative rule. The minimum life is 76.4 cycles, which coincides with the real situation. Thus the load time history on spindle nose can be effectively acquired by dynamic simulation and finite element method, furthermore the structure fatigue life can be accurately predicted.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第9期106-111,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(50965014) 江西省教育厅青年科学基金资助项目(GJJ11034)
关键词 后扭力梁 载荷谱 迭代仿真 疲劳寿命预测 rear torsion beam load spectrum fatigue life prediction iterative simulation
  • 相关文献

参考文献8

二级参考文献49

  • 1董丽涛,刘荣昌,王庆祝,马淑英,尚玉峰.曲轴的强度研究方法与曲轴疲劳寿命的提高[J].拖拉机与农用运输车,2004,31(4):18-20. 被引量:6
  • 2鱼春燕,姜树李.SL4105Z型柴油机曲轴有限元分析及优化设计[J].拖拉机与农用运输车,2005,32(1):37-40. 被引量:11
  • 3虞健,左曙光,陈栋华,高秋金.扭转梁式半独立悬架建模与动态特性分析[J].系统仿真学报,2006,18(8):2300-2302. 被引量:12
  • 4李增刚.ADAMS入门详解与实例[M].北京:国防工业出版社,2009.
  • 5陈德民,槐创锋,张克涛.精通ADAMS2005/2007虚拟样机技术[M].北京:化学工业出版社,2010.
  • 6李惠斌.振动理论与工程应用[M].北京:北京理工大学出版社,2006.
  • 7Arkov Y V, Kulikov G G, Breikin V T. Dynamic model identification of gas turbines [ C ]. UKACC International Conference on Control '98,1998:1367 -1371.
  • 8Richard J. Frequency domain structural identification [ D ].Monterey: University of California, 1996.
  • 9Pintelon R. Parameter identifications in the frequency domain-A survey [J]. IEEE, 1994, 39(11): 2245-2260.
  • 10Mota S D J, Botez R M. New identification method based on neural network for helicopters from flight test data [ J ]. AIAA, 2009, 2009(5938): 1 -31.

共引文献128

同被引文献52

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部